imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

QUICKSWITCH[®] PRODUCTS 2.5V / 3.3V 10-BIT FLOW-THROUGH PIN OUT, HIGH BANDWIDTH SWITCH

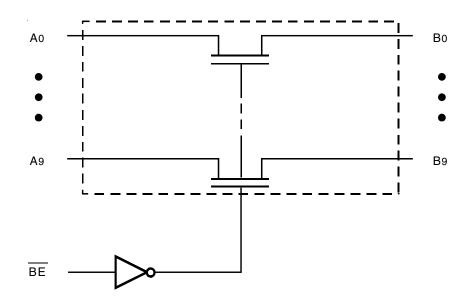
IDTQS3VH2861

FEATURES:

- N channel FET switches with no parasitic diode to Vcc
 - Isolation under power-off conditions
 - No DC path to Vcc or GND
- 5V tolerant in OFF and ON state
- 5V tolerant I/Os
- · Flat Ron characteristics over operating range
- Rail-to-rail switching 0 5V
- Bidirectional dataflow with near-zero delay: no added ground bounce
- Excellent Row matching between channels
- Vcc operation: 2.3V to 3.6V
- · High bandwidth
- LVTTL-compatible control Inputs
- · Undershoot Clamp Diodes on all switch and control Inputs
- Low I/O capacitance, 4pF typical
- 25Ω resistors for low noise and line matching
- Available in QSOP package

APPLICATIONS:

- Hot-swapping
- Low distortion analog switch
- · Replaces mechanical relay
- ATM 25/155 switching

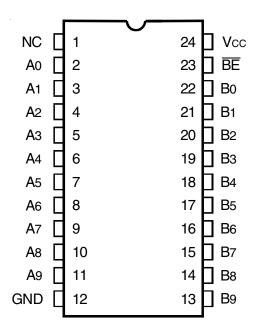

DESCRIPTION:

The QS3VH2861 HotSwitch is a high bandwidth bus switch with 10-bit flow-though pin out. The QS3VH2861, with 25Ω ON resistance and 1.35ns propagation delay, is ideal for line matching and low noise environments. The switches are controlled by active low enable ($\overline{\text{BE}}$) control. In the ON state, the switches can pass signals up to 5V. In the OFF state, the switches offer very high impedence at the terminals.

The combination of small propagation delay, high OFF impedance, and over-voltage tolerance makes the QS3VH2861 ideal for high performance communications applications.

The QS3VH2861 is characterized for operation from -40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM


The IDT logo is a registered trademark of Integrated Device Technology, Inc.

FEBRUARY 2014

IDTQS3VH2861 2.5V/3.3V 10-BIT ACTIVE HIGH AND LOW ENABLE, HIGH BANDWIDTH SWITCH

INDUSTRIAL TEMPERATURE RANGE

PIN CONFIGURATION

QSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	SupplyVoltage to Ground	-0.5 to +4.6	V
VTERM ⁽³⁾	DC Switch Voltage Vs	-0.5 to +5.5	V
VTERM ⁽³⁾	DC Input Voltage VIN	-0.5 to +5.5	V
VAC	AC Input Voltage (pulse width ≤20ns)	-3	V
Ιουτ	DC Output Current (max. sink current/pin)	120	mA
Tstg	Storage Temperature	–65 to +150	°C

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc .

CAPACITANCE (TA = +25°C, F = 1MHz, VIN = 0V, VOUT = 0V)

Symbol	Parameter ⁽¹⁾	Тур.	Max.	Unit
CIN	Control Inputs	3	5	рF
CI/O	Quickswitch Channels (Switch OFF)	4	6	рF
Cı/o	Quickswitch Channels (Switch ON)	8	12	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	Description
BE	Active LOW Bus Enable
A0 - A9	Bus A
B0 - B9	Bus B

FUNCTION TABLE⁽¹⁾

BE	A0 - A9	Function
Н	Z	Disconnect
L	B0 - B9	Connect

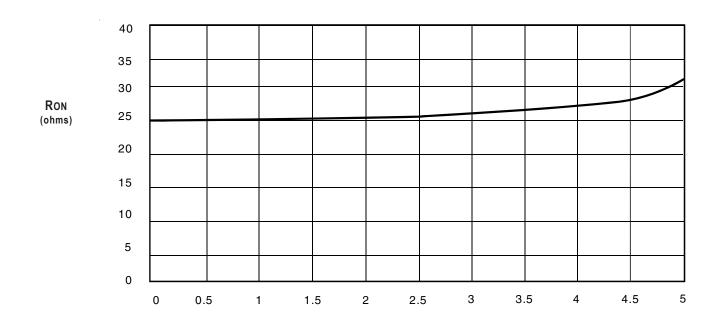
NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

Z = High-Impedence

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE


Following Conditions Apply Unless Otherwise Specified: Industrial: TA = -40°C to +85°C, Vcc = $3.3V \pm 0.3V$

Symbol	Parameter	Test C	onditions		Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage	Guaranteed Logic HIGH	Vcc = 2.3V to 2.7	Ϋ́	1.7	—	_	V
		for Control Inputs	Vcc = 2.7V to 3.6	ïV	2	-	_	
VIL	InputLOWVoltage	Guaranteed Logic LOW	Vcc = 2.3V to 2.7	V	—	—	0.7	V
		for Control Inputs	Vcc = 2.7V to 3.6	ïV	_	—	0.8]
lin	Input Leakage Current (Control Inputs)	$0V \le VIN \le VCC$		—	—	±1	μA	
loz	Off-State Current (Hi-Z)	$0V \le VOUT \le 5V$, Switches OFF		—	—	±1	μA	
IOFF	Data Input/Output Power Off Leakage	VIN or VOUT 0V to 5V, Vcc = 0V		_	—	±1	μA	
		Vcc = 2.3V	VIN = 0V	Ion = 30mA	18	27	39	
Ron	Switch ON Resistance	Typical at Vcc = 2.5V	VIN = 1.7V	Ion = 15mA	18	28	41	Ω
		Vcc = 3V	VIN = 0V	Ion = 30mA	18	25	38	
			VIN = 2.4V	Ion = 15mA	18	26	40	

NOTE:

1. Typical values are at Vcc = 3.3V and TA = 25° C.

TYPICAL ON RESISTANCE vs VIN AT Vcc = 3.3V

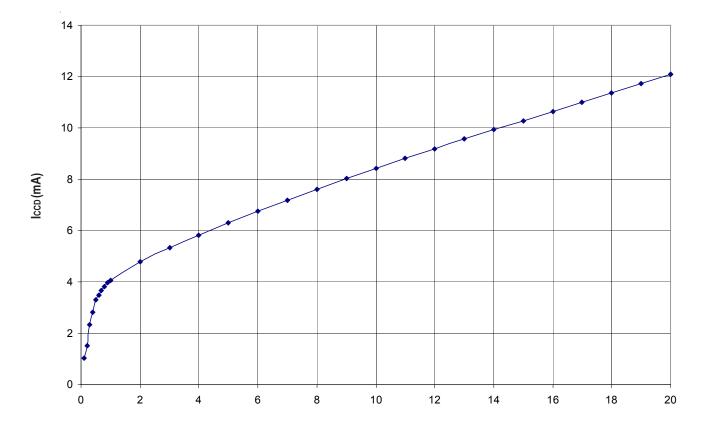
VIN (Volts)

INDUSTRIAL TEMPERATURE RANGE

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
lccq	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc, f = 0	_	2	4	mA
Δ lcc	Power Supply Current ^(2,3) per Input HIGH	Vcc = Max., VIN = 3V, f = 0 per Control Input	—	-	30	μA
ICCD	Dynamic Power Supply Current (4)	Vcc = 3.3V, A and B Pins Open, Control Inputs	See Typical	ICCD vs Enabl	e Frequency	graph below
		Toggling @ 50% Duty Cycle				

NOTES:


1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.

2. Per input driven at the specified level. A and B pins do not contribute to Δ lcc.

3. This parameter is guaranteed but not tested.

4. This parameter represents the current required to switch internal capacitance at the specified frequency. The A and B inputs do not contribute to the Dynamic Power Supply Current. This parameter is guaranteed but not production tested.

TYPICAL ICCD vs ENABLE FREQUENCY CURVE AT VCC = 3.3V

ENABLE FREQUENCY (MHz)

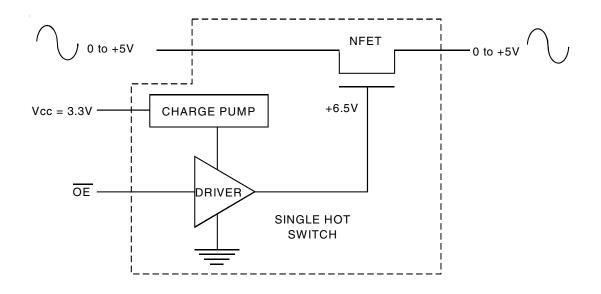
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40$ °C to +85°C

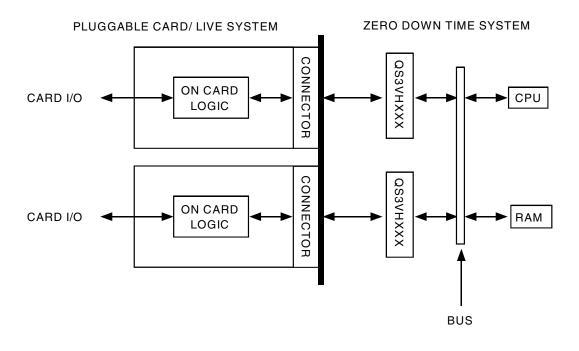
		$Vcc = 2.5 \pm 0.2V^{(1)}$		$Vcc = 3.3 \pm 0.3 V^{(1)}$		
Symbol	Parameter	Min. ⁽⁴⁾	Max.	Min. ⁽⁴⁾	Max.	Unit
tPLH	Data Propagation Delay ^(2,3)		0.9	—	1.35	ns
t PHL	Ax to Bx or Bx to Ax					
tPZH	Switch Turn-On Delay	1.5	9	1.5	8	ns
tPZL	BE to Ax or Bx					
tPHZ	Switch Turn-Off Delay	1.5	7.5	1.5	7.5	ns
tPLZ	BE to Ax or Bx					
fBE	Operating Frequency-Enable ^(2,5)		10		20	MHz

NOTES:

1. See Test Conditions under TEST CIRCUITS AND WAVEFORMS.


2. This parameter is guaranteed but not production tested.

3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 1.35ns at CL = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.


4. Minimums are guaranteed but not production tested.

5. Maximum toggle frequency for \overline{BE} control input (pass voltage > Vcc, VIN = 5V, RLOAD $\geq 1M\Omega$, no CLOAD).

SOME APPLICATIONS FOR HOTSWITCH PRODUCTS

Rail-to-Rail Switching

Hot-Swapping

DISABLE

tplz <

Ин

Vт

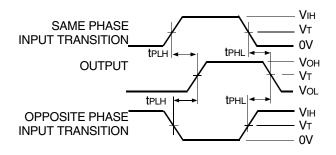
0V

VLOAD/2

Vol

Vон

0V


VOL + VLZ

Voh - Vhz

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$Vcc^{(1)}= 3.3V \pm 0.3V$	$Vcc^{(2)}= 2.5V \pm 0.2V$	Unit
VLOAD	6	2 x Vcc	V
Vih	3	Vcc	V
Vт	1.5	Vcc/2	V
VLZ	300	150	mV
Vнz	300	150	mV
CL	50	30	pF

Propagation Delay

VLOAD/2

tPHZ

Vт

Vт

0V

ENABLE

tPZL

tP7H

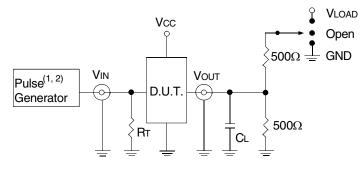
SWITCH

SWITCH

OPEN

CONTROL

INPUT


OUTPUT

OUTPUT

HIGH

NORMALLY

NORMALLY SWITCH LOW

Test Circuits for All Outputs

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

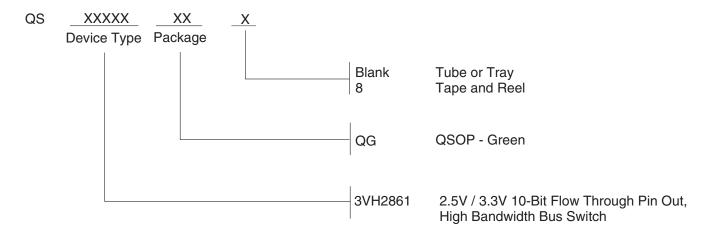
Enable and Disable Times

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

NOTES:


1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.

2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
tplz/tpzl	Vload
tphz/tpzh	GND
tPD	Open

ORDERING INFORMATION

Datasheet Document History

09/01/08 Pg. 4, 8 02/24/14 Pg. 8 Revise ICCQ Typ. and Max. Remove non green package version and updated the ordering information by removing the "IDT" notation. Updated the Ordering Information by Adding Tape and Reel information.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com