: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES:

- Low ON resistance: rds(on) $=5 \Omega$
- Fast transition time: ttran $=6 \mathrm{~ns}$
- Wide bandwidth: 830 MHz (-3dB point)
- Crosstalk: -115 dB at $50 \mathrm{KHz},-100 \mathrm{~dB}$ at $5 \mathrm{MHz},-66 \mathrm{~dB}$ at 30 MHz
- Off-isolation: -90 dB at $50 \mathrm{KHz},-60 \mathrm{~dB}$ at $5 \mathrm{MHz},-50 \mathrm{~dB}$ at 30 MHz
- Single 5V supply
- Can be used as multiplexer or demultiplexer
- TTL-compatible control inputs
- Ultra-low quiescent current: $3 \mu \mathrm{~A}$
- Available in QSOP package

APPLICATIONS:

- High-speed video signal switching/routing
- HDTV-quality video signal routing
- Audio signal switching/routing
- Data acquisition
- ATE systems
- Telecomm routing
- Switch between multiple video sources
- Token Ring transceivers
- High-speed networking

DESCRIPTION:

The QS4A205 is a high-performance CMOS analog Four-Channel SPDT multiplexer/demultiplexer with individual enables. The low Onresistance of the QS4A205 allows inputs to be connected to outputs with low insertion loss and high bandwidth. TTL-compatible control circuitry with "Break-Before-Make" feature prevents contention.
The QS4A205 with 830MHz bandwidth makes it ideal for high-performance video signal switching, audio signal switching, and telecomm routing applications. High performance and low power dissipation makes this device ideal for battery operated and remote instrumentation applications.

The QS4A205 is offered in the QSOP package and has several advantages over conventional packages such as PDIP and SOIC including:

- Reduced signal delays due to denser component packaging on circuit boards
- Reduced system noise due to less pin inductance resulting in lower ground bounce

The QS4A205 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Supply Voltage to Ground	-0.5 to +7	V
VTERM $^{(3)}$	DC Switch Voltage Vs	-0.5 to +7	V
-	Analog Input Voltage	-0.5 to +7	V
VTERM $^{(3)}$	DC Input Voltage VIN	-0.5 to +7	V
VAC	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
IOUT	DC Output Current	120	mA
PMAX	Maximum Power Dissipation	0.7	W
TstG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V} \operatorname{IN}=0 \mathrm{~V}, \mathrm{~V}\right.$ Out $\left.=\mathrm{OV}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Typ.	Max.	Unit
CmUX (OFF)	MUX Off Capacitance	$\overline{\mathrm{E}}=\mathrm{VCC}, \mathrm{VIN}=$ Vout $=0 \mathrm{~V}$	5.6	-	pF
CDEMUX (OFF)	DEMUX Off Capacitance	$\overline{\mathrm{E}}=\mathrm{VCC}, \mathrm{VIN}=$ Vout $=0 \mathrm{~V}$	7.4	-	pF
CMUX (ON)	MUX On Capacitance	$\overline{\mathrm{E}}=\mathrm{OV}, \mathrm{VIN}=$ Vout $=0 \mathrm{~V}$	12	-	pF
CDEMUX (ON)	DEMUX On Capacitance	$\overline{\mathrm{E}}=\mathrm{OV}, \mathrm{VIN}=$ VOUT $=0 \mathrm{~V}$	15	-	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	I / O	Description
$\mathrm{I} \times \mathrm{A}$	I / O	Demux Port A
$\mathrm{I} \times \mathrm{B}$	I / O	Demux Port B
$\mathrm{I} \times \mathrm{C}$	I / O	Demux Port C
$\mathrm{I} \times \mathrm{D}$	I / O	Demux Port D
$\overline{\mathrm{E}}$	I	Enable Input
S	I	Select Input
$\mathrm{YA}-\mathrm{YD}$	I / O	Mux Port A-D

FUNCTION TABLE(1)

Enable	Select	MUXIDEMUX Ports				Function
$\overline{\mathrm{E}}$	S	YA	YB	YC	YD	
H	X	Z	Z	Z	Z	Dis
L	L	IOA	IOB	IOC	IOD	Select0
L	H	I1A	I1B	I1C	I1D	Select 1

NOTE

1. H = HIGH Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
Analog Switch						
VIN	Analog Signal Range ${ }^{(2)}$		-0.5	1	Vcc-1	V
ros(on)	Drain-source ON resistance ${ }^{(2,3)}$	Vcc $=$ Min., $\mathrm{VIN}=0 \mathrm{~V}$, $\mathrm{ION}=30 \mathrm{~mA}$	-	5	7	Ω
		$\mathrm{Vcc}=$ Min., $\mathrm{VIN}=2.4 \mathrm{~V}$, Ion $=15 \mathrm{~mA}$	-	13	17	
IC(OFF)	Channel OffLeakage Current	$\mathrm{IN}_{\mathrm{N}}=\mathrm{Vcc}$ or $\mathrm{OV} ; \mathrm{Y}_{\mathrm{N}}=0 \mathrm{~V}$ or Vcc; $\overline{\mathrm{E}}=\mathrm{Vcc}$	-	2	-	nA
IC(ON)	Channel On Leakage Current	$I_{N}=Y_{N}=0 V$ (each channel is turned on sequentially)	-	2	-	nA
Digital Control						
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	-	-	V
VIL	InputLOW Voltage	Guaranteed Logic LOW for Control Pins	-	-	0.8	V
Dynamic Characteristics						
tTRANS	Switching Time of MUX S to Y	$\mathrm{RL}=1 \mathrm{~K} \Omega, \mathrm{CL}=100 \mathrm{pF}$	0.5	-	6.6	ns
ton(EN)	Enable Turn-On Time, $\overline{\mathrm{E}}$ to Y	$\mathrm{RL}=1 \mathrm{~K} \Omega, \mathrm{CL}=100 \mathrm{pF}$	0.5	-	6	ns
toff(EN)	Enable Turn-Off Time, Ē to Y	$\mathrm{RL}=1 \mathrm{~K} \Omega, \mathrm{CL}=100 \mathrm{pF}$	0.5	-	6	ns
PD	Group Delay ${ }^{(2,4)}$	$\mathrm{RL}=1 \mathrm{~K} \Omega, C \mathrm{~L}=100 \mathrm{pF}$	-	-	250	ps
f3dB	-3dB Bandwidth	$\mathrm{VIN}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{RL}=75 \Omega$	-	830	-	MHz
	Off-isolation	VIN $=1 \mathrm{Vp}$-p, RL $=75 \Omega, \mathrm{f}=5 \mathrm{MHz}$	-	-60	-	dB
Xtalk	Crosstalk	$\mathrm{VIN}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{RL}=75 \Omega, \mathrm{f}=5 \mathrm{MHz}$	-	-100	-	dB
Qcı	Charge Injection		-	1.5	-	pC

NOTES:

1. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Max value is guaranteed but not production tested.
3. Measured by voltage drop between A and C pins or B and D pins at indicated current through the switch. $O N$ resistance is determined by the lower of the voltages on the two (A, C, or B, D) pins.
4. The bus switch contributes no group delay other than the RC delay of the ON resistance of the switch and load capacitance. Group delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions	Max.	Unit
IccQ	QuiescentPower	VCC $=$ Max., VIN $=$ GND or Vcc, $\mathrm{f}=0$	3	$\mu \mathrm{~A}$

TYPICALCHARACTERISTICS

Off-isolation and Crosstalk vs. Frequency
NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

Off-isolation and Crosstalk vs. Frequency

[^0]

Off-isolation and Crosstalk vs. Frequency
NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation = $20 \log |\mathrm{Vo} / \mathrm{Vs}|$

Insertion Loss vs. Frequency
NOTE:

1. Insertion Loss = $20 \log |\mathrm{Vo} / \mathrm{Vs}|$

TYPICAL CHARACTERISTICS (CONTINUED)

Insertion Loss vs. Frequency

NOTE:

1. Insertion Loss $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

TEST CIRCUITS

Transition Time

TEST CIRCUITS (CONTINUED)

Enable Switching Time

Insertion Loss

NOTE:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

Off-Isolation
NOTE:

1. Off-isolation $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

04/13/2014 Pg. 7 Updated the Ordering Information by removing non green package version, the "IDT" notation and Adding Tape and Reel information.

[^0]: NOTES:

 1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
 2. Off-isolation $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
