: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DESCRIPTION

The QVE00034 is a slotted optical switch designed for multipurpose non-contact sensing. It consists of a GaAs LED and a silicon photo-transistor packaged into an injection molded housing and facing each other across a $0.315^{\prime \prime}(8.0 \mathrm{~mm})$ gap. The housing is featuring locating knobs for accurate mounting.

FEATURES

- No contact switching
- 8 mm wide slot
- 0.5 mm aperture width
- Opaque black plastic housing
- Locating knobs on housing base for accurate mounting
- Transistor Output

PHOTOTRANSISTOR OPTICAL INTERRUPTER SWITCH

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)			
Parameter	Symbol	Rating	Units
Operating Temperature	ToPR	-55 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +100	${ }^{\circ} \mathrm{C}$
Soldering Temperature (Iron) ${ }^{(2,3,4)}$	$\mathrm{T}_{\text {SOL-I }}$	240 for 5 sec	${ }^{\circ} \mathrm{C}$
Soldering Temperature (Flow) ${ }^{(2,3)}$	$\mathrm{T}_{\text {SOL-F }}$	260 for 10 sec	${ }^{\circ} \mathrm{C}$
EMITTER Continuous Forward Current	I_{F}	50	mA
Reverse Voltage	V_{R}	6	V
Power Dissipation ${ }^{(1)}$	P_{D}	100	mW
SENSOR Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	30	V
Emitter-Collector Voltage	$\mathrm{V}_{\text {ECO }}$	4.5	V
Collector Current	I_{C}	20	mA
Power Dissipation ${ }^{(1)}$	P_{D}	150	mW

NOTES

1. Derate power dissipation linearly $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
2. RMA flux is recommended.
3. Methanol or isopropyl alcohols are recommended as cleaning agents.
4. Soldering iron tip $1 / 16^{\prime \prime}(1.6 \mathrm{~mm})$ from housing.

ELECTRICAL/OPTICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	TEST CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS
EMITTER						
Forward Voltage	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	V_{F}	-	1.2	1.5	V
Reverse Current	$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$	I_{R}	-	-	10	$\mu \mathrm{A}$
Peak Emission Wavelength	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	$\lambda_{\text {PE }}$	-	940	-	nm
SENSOR						
	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	I_{D}	-	-	200	nA
	$\mathrm{V}_{\text {CE }}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-	-	3	$\mu \mathrm{A}$
COUPLED Collector Current	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{C}(\mathrm{ON})}$	0.5	-	14	mA
Collector Emitter Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {CE (SAT) }}$	-	-	0.4	V
Rise Time	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	t_{r}	-	4	-	
Fall Time	$\mathrm{I}_{\mathrm{C}}=5 \mu \mathrm{~A}$	t_{f}	-	4	-	μs

QVE00034

TYPICAL PERFORMANCE CURVES

Fig. 1 Collector Current vs. Shield Distance

Fig. 3 Collector-Emitter Voltage vs. Collector Current

Fig. 2 Collector Current vs. Shield Distance

Fig. 4 Collector-Emitter Voltage vs. Temperature

QVE00034

Fig. 5 Collector Current vs. Temperature

Fig. 7 Rise Time vs. Load Resistance

Fig. 6 Collector Current vs. Forward Current

Fig. 8 Fall Time vs. Load Resistance

Fig. 9 Forward Voltage vs. Forward Current

QVE00034

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
