

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

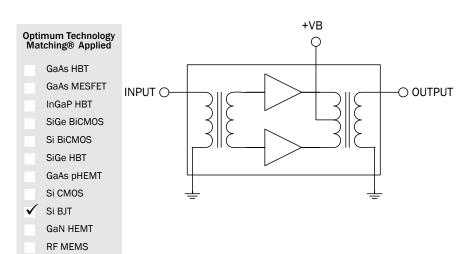
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

rfmd.com

R0605250L


5-65 MHz Si REVERSE HYBRID, LOW CURRENT

Package: SOT-115J

Product Description

The R0605250L is a hybrid reverse amplifier. The part employs silicon die. It has extremely low distortion and superior return loss performance. The part also provides optimal reliability with low noise and is well suited for 5MHz to 65MHz CATV amplifiers for reverse channel systems.

Features

- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under All Terminations
- 25.4dB Typ. Gain at 65MHz
- 140 mA Max. at 24 VDC

Applications

■ 5 MHz to 65 MHz CATV Amplifier For Reverse Channel Systems

Dovernator	Specification			Unit	O and it is a	
Parameter	Min.	Тур.	Max.	Unit	Condition	
Overall		_			$V_B = 24V; T_{MB} = 30$ °C; $Z_S = Z_L = 75\Omega$	
Power Gain	24.5	25.3	25.5	dB	f=5MHz	
	24.3	25.4		dB	f=65MHz	
Slope [1]	-0.2	0.1	0.5	dB	f=5MHz to 65MHz	
Flatness of Frequency Response			±0.2	dB	f=5MHz to 65MHz	
Input Return Loss	20.0			dB	f=5MHz to 65MHz	
Output Return Loss	20.0			dB	f=5MHz to 65MHz	
Noise Figure		2.3	3.0	dB	f=65MHz	
Total Current Consumption (DC)	125.0	130.0	140.0	mA		
Distortion data 5MHz to						
65MHz						
СТВ			-69	dBc	7 ch flat; V ₀ =50dBmV ^[2]	
XMOD			-59	dBc	7 ch flat; V _O =50dBmV ^[2]	
CSO			-70	dBc	7 ch flat; V _O =50dBmV ^[2]	
d_2			-71	dBc	[3]	
STB			-70	dB	[4]	

^{1.} The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency. 2. 7 channels, NTSC frequency raster: T7-T13(7.0 MHz to 43.0 MHz), +50 dBmV flat output level. 3. f_1 =7 MHz; V_1 =50 dBmV; f_2 =25 MHz; V_2 =50 dBmV; f_{TEST} = f_1 + f_2 =32 MHz. 4. f_1 =13 MHz; V_1 =50 dBmV; f_2 =25 MHz; V_2 = V_1 ; f_3 =7 MHz; V_3 = V_1 ; f_{TEST} = f_1 + f_2 - f_3 =31 MHz.

Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by the NCTA.

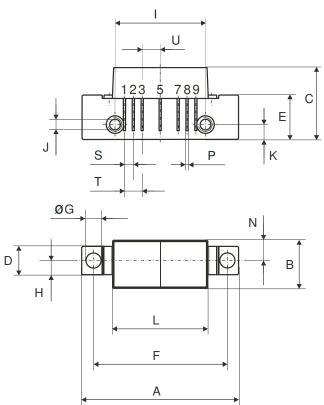
Composite Triple Beat (CTB) - The CTB parameter is defined by the NCTA.

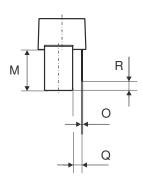
Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested.

R0605250L

Absolute Maximum Ratings

Parameter	Rating	Unit
RF Input Voltage (single tone)	65	dBmV
DC Supply Over-Voltage (5 minutes)	30	V
Storage Temperature	-40 to +100	°C
Operating Mounting Base Tempera- ture	-30 to +100	°C




Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EU Directive 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

All Dimensions in mm:

	nominal	min	max
Α	44,6 ^{± 0,2}	44,4	44,8
В	13,6 ^{± 0,2}	13,4	13,8
С	20,4 ^{± 0,5}	19,9	20,9
D	8 ^{± 0,15}	7,85	8,15
Е	12,6 ± 0,15	12,45	12,75
F	38,1 ± 0,2	37,9	38,3
G	4 +0,2 / -0,05	3,95	4,2
Н	4 ^{± 0,2}	3,8	4,2
1	25,4 ± 0,2	25,2	25,6
J	UNC 6-32	-	-
K	4,2 ± 0,2	4,0	4,4
L	27,2 ± 0,2	27,0	27,4
М	11,6 ^{± 0,5}	11,1	12,1
Ν	5,8 ^{± 0,4}	5,4	6,2
0	0,25 ± 0,02	0,23	0,27
Р	0,45 ± 0,03	0,42	0,48
Q	2,54 ^{± 0,3}	2,24	2,84
R	2,54 ^{± 0,5}	2,04	3,04
S	2,54 ^{± 0,25}	2,29	2,79
Т	5,08 ± 0,25	4,83	5,33
U	5,08 ± 0,25	4,83	5,33

Pinning:

0 5 10mm

Notes:

