: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Power Supply

- AC 200-240V Input
- Width only 125 mm , Weight only 1.8 kg
- 94.6% Full Load and Excellent Partial Load Efficiencies
- 50% BonusPower ${ }^{\oplus}$, 1440 W for up to 4 s
- 110A High Peak Current for 25 ms for Easy Fuse Tripping
- Safe Hiccup ${ }^{P L U S}$ Overload Mode
- Active PFC (Power Factor Correction)
- Negligible Low Input Inrush Current Surge
- Full Power Between $-25^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$
- Current Sharing Feature for Parallel Use
- Internal Data Logging for Troubleshooting Included.
- DC-OK Relay Contact
- Shut-down Input
- 3 Year Warranty

General Description

The most outstanding features of the DIMENSION QSeries DIN-rail power supplies are the extremely high efficiencies and the small sizes, which are achieved by a synchronous rectification and other technological designs.
The QS40.244 is a device for 200-240V mains voltages. Large power reserves of 150% support the starting of heavy loads such as DC-motors or capacitive loads. In many cases this allows the use of a unit from a lower wattage class which saves space and money.
High immunity to transients and power surges as well as low electromagnetic emission makes usage in nearly every environment possible.
The integrated output power manager and input fuses as well as the near zero input inrush current make installation and usage simple. Diagnostics are easy due to the DC-OK relay, a green DC-OK LED and the red overload LED.
A large international approval package for a variety of applications makes this unit suitable for nearly every application.

Order Numbers

Power Supply QS40.244
24-28V Standard unit
Accessory
ZM2.WALL Wall mount bracket
UF20.241 Buffer unit
YR80.242 Redundancy module
YR40.245 Redundancy module

Markings

INDEX

Page

1. Intended Use 3
2. Installation Requirements 3
3. AC-Input. 4
4. Input Inrush Current 5
5. DC-Input. 5
6. Output 6
7. Hold-up Time 8
8. DC-OK Relay Contact 9
9. Shut-down Input 9
10. Remote Control of Output Voltage 10
11. Internal Data Logging 10
12. Efficiency and Power Losses 11
13. Lifetime Expectancy and MTBF 12
14. Functional Diagram 12
15. Terminals and Wiring 13
16. Front Side and User Elements. 14
17. EMC 15
18. Environment 16
19. Protection Features 17
20. Safety Features 17
21. Dielectric Strength 18
22. Approvals 18
Page
23. Physical Dimensions and Weight 19
24. Accessories 20
24.1. ZM2.WALL - Wall mounting bracket 20
24.2. UF20.241 - Buffer module 20
24.3. YR80.242-Redundancy Module 21
24.4. YR40.245-Redundancy Module 21
25. Application Notes 22
25.1. Repetitive Pulse Loading 22
25.2. Peak Current Capability 23
25.3. External Input Protection 23
25.4. Charging of Batteries 24
25.5. Output Circuit Breakers 24
25.6. Parallel Use to Increase Output Power 25
25.7. Parallel Use for Redundancy 25
25.8. Series Operation 26
25.9. Inductive and Capacitive Loads. 26
25.10. Back-feeding Loads 26
25.11. Operation on Two Phases 27
25.12. Use in a Tightly Sealed Enclosure 27
25.13. Mounting Orientations 28

The information presented in this document is believed to be accurate and reliable and may change without notice. No part of this document may be reproduced or utilized in any form without permission in writing from the publisher.

TERMINOLOGY AND AbREVIATIONS

PE and $\mathcal{*}$ symbol PE is the abbreviation for Protective Earth and has the same meaning as the symbol \mathcal{O}. Earth, Ground This document uses the term "earth" which is the same as the U.S. term "ground".
T.b.d.

AC 230V To be defined, value or description will follow later. A figure displayed with the AC or DC before the value represents a nominal voltage with standard tolerances (usually $\pm 15 \%$) included. E.g.: DC 12 V describes a 12 V battery disregarding whether it is full (13.7 V) or flat (10 V)

230Vac A figure with the unit (Vac) at the end is a momentary figure without any additional tolerances included.
$\mathbf{5 0 H z}$ vs. $\mathbf{6 0 H z} \quad$ As long as not otherwise stated, $A C 230 \mathrm{~V}$ parameters are valid at 50 Hz mains frequency.
may A key word indicating flexibility of choice with no implied preference.
shall A key word indicating a mandatory requirement.
should A key word indicating flexibility of choice with a strongly preferred implementation.

1. Intended Use

This device is designed for installation in an enclosure and is intended for the general use such as in industrial control, office, communication, and instrumentation equipment.
Do not use this power supply in equipment, where malfunction may cause severe personal injury or threaten human life.
This device is designed for use in non-hazardous, ordinary or unclassified locations.

2. Installation Requirements

This device may only be installed and put into operation by qualified personnel.
This device does not contain serviceable parts. The tripping of an internal fuse is caused by an internal defect.
If damage or malfunction should occur during installation or operation, immediately turn power off and send unit to the factory for inspection.
Mount the unit on a DIN-rail so that the output and input terminals are located on the bottom of the unit. For other mounting orientations see de-rating requirements in this document. See chapter 25.13.
This device is designed for convection cooling and does not require an external fan. Do not obstruct airflow and do not cover ventilation grid (e.g. cable conduits) by more than 15\%!
Keep the following installation clearances: 40 mm on top, 20 mm on the bottom, 5 mm on the left and right sides are recommended when the device is loaded permanently with more than 50% of the rated power. Increase this clearance to 15 mm in case the adjacent device is a heat source (e.g. another power supply).
A disconnecting means shall be provided for the output of the power supplies when used in applications according to CSA C22.2 No 107.1-01.

WARNING Risk of electrical shock, fire, personal injury or death.

- Do not use the power supply without proper grounding (Protective Earth). Use the terminal on the input block for earth connection and not one of the screws on the housing.
- Turn power off before working on the device. Protect against inadvertent re-powering.
- Make sure that the wiring is correct by following all local and national codes.
- Do not modify or repair the unit.
- Do not open the unit as high voltages are present inside.
- Use caution to prevent any foreign objects from entering the housing.
- Do not use in wet locations or in areas where moisture or condensation can be expected.
- Do not touch during power-on, and immediately after power-off. Hot surfaces may cause burns.

QS40.244

3. AC-InPuT

AC input $A C$ input range	nom. min. min. min.	AC 200-240V 170-264Vac 110-170Vac $0-170 \mathrm{Vac}$ 264-300Vac	suitable for TN, TT and IT mains networks continuous operation full power for up to 200 ms no damage to the unit < 500 ms
Allowed voltage L or N to earth	max.	300 Vac	continuous, IEC 62103
Input frequency	nom.	$50-60 \mathrm{~Hz}$	$\pm 6 \%$
Turn-on voltage	typ.	164Vac	steady-state value, load independent, see Fig. 3-1
Shut-down voltage	typ.	151 Vac	steady-state value, load independent, see Fig. 3-1
Input current	typ.	4.6A	at 24V, 40A, see Fig. 3-3
Power factor*)	typ.	0.96	at 24V, 40A, see Fig. 3-4
Crest factor**	typ.	1.65	at 24V, 40A
Start-up delay	typ.	750 ms	see Fig. 3-2
Rise time	typ.	23 ms	at $24 \mathrm{~V}, 40 \mathrm{~A}$, resistive load, 0 mF see Fig. 3-2
	typ.	25 ms	at 24V, 40A, resistive load, 40 mF see Fig. 3-2
Turn-on overshoot	max.	200 mV	see Fig. 3-2

Fig. 3-3 Input current vs. output load at 24 V

Fig. 3-2 Turn-on behavior, definitions

Fig. 3-4 Power factor vs. output load at 24V

QS40.244

4. Input Inrush Current

The power supply is equipped with an active inrush current limitation circuit, which limits the input inrush current after turn-on to a negligible low value. The input current is usually smaller than the steady state input current.

Inrush current ${ }^{*)}$	max.	$18 \mathrm{~A}_{\text {peak }}$	over entire temperature range
	typ.	$14 \mathrm{~A}_{\text {peak }}$	over entire temperature range
Inrush energy	max.	$4 \mathrm{~A}^{2} \mathrm{~s}$	over entire temperature range
Inrush delay	typ.	750 ms	

*) The charging current into EMI suppression capacitors is disregarded in the first microseconds after switch-on.

Fig. 4-1 Typical turn-on behaviour at nominal load and $25^{\circ} \mathrm{C}$ ambient temperature

5. DC-InPUT

Do not operate this power supply with DC-input voltage. Check the CPS20.241-D1 unit instead. Two CPS20.241-D1 units in parallel might be necessary.

6. Output

	nom.	24 V	
Output voltage	min.	$24-28 \mathrm{~V}$	guaranteed
Adjustment range	max.	$30 \mathrm{~V}^{* * *)}$	at clockwise end position of potentiometer
	typ.	24.1 V	$\pm 0.2 \%$, at full load, cold unit, in "single use" mode
Factory setting	typ.	24.1 V	$\pm 0.2 \%$, at full load, cold unit, in "parallel use" mode
	typ.	25.1 V	at no load, cold unit, in "parallel use" mode

*) BonusPower ${ }^{\oplus}$, short term power capability (up to typ. 4s)
The power supply is designed to support loads with a higher short-term power requirement without damage or shutdown. The shortterm duration is hardware controlled by an output power manager. This BonusPower ${ }^{\circledR}$ is repeatedly available. Detailed information can be found in chapter 25.1. If the power supply is loaded longer with the BonusPower ${ }^{\circledR}$ than shown in the Bonus-time diagram (see Fig. 6-5), the max. output power is automatically reduced to 960 W . If the power requirement is continuously above 960 W and the voltage falls below approx. 20 V (due to the current regulating mode at overload), the unit shuts-off and makes periodical restart attempts. This behavior is called hiccup mode which is described below. If the voltage is above 20V, the unit continuously delivers current.
**) Hiccup ${ }^{p L U S}$ Mode
Up to 4s of overloading, the power supply delivers continuous output current. After this, the output power is reduced to nearly zero for approx. 17s before a new start attempt is automatically performed. If the overload has been cleared, the device will operate normally. If the overload still exists, the output current will be delivered for 2 to 4 s (depending on the overload) again followed by a 17 s rest time. This cycle is repeated as long as the overload exists. See Fig. 6-3. During the off-period a small rest voltage and rest current is present on the output.
***) Discharge current of output capacitors is not included.
****) This is the maximum output voltage which can occur at the clockwise end position of the potentiometer due to tolerances. It is not guaranteed value which can be achieved. The typical value is about 28.5 V .

Fig. 6-1 Output voltage vs. output current in "single use" mode, typ.

Fig. 6-3 Short-circuit on output, Hiccup ${ }^{\text {PLUS }}$ mode, typ.

Fig. 6-5 Bonus time vs. output power

Fig. 6-2 Output voltage vs. output current in "parallel use" mode, typ.

Fig. 6-4 Dynamic overcurrent capability, typ.

Fig. 6-6 BonusPower ${ }^{\oplus}$ recovery time

The BonusPower ${ }^{\circledR}$ is available as soon as power comes on and after the end of an output short circuit or output overload.

Fig. 6-7 BonusPower ${ }^{\oplus}$ after input turn-on

Fig. 6-8 BonusPower ${ }^{\circledR}$ after output short

Nov. 2013 / Rev. 3.1 DS-QS40.244-EN
All parameters are specified at $24 \mathrm{~V}, 40 \mathrm{~A}, 230 \mathrm{Vac}, 25^{\circ} \mathrm{C}$ ambient and after a 5 minutes run-in time unless otherwise noted.

7. Hold-up Time

	AC 230V		
Hold-up Time	typ.	58 ms	at 24V, 20A, see Fig. 7-1
	min.	47 ms	at 24V, 20A, see Fig. 7-1
	typ.	30 ms	at 24V, 40A, see Fig. 7-1
	min.	24 ms	at 24V, 40A, see Fig. 7-1

Fig. 7-1 Hold-up time vs. input voltage

Hold-up Time				
60ms				
50				
40				
30			, ', 40	typ.
$20----+----+-24 \mathrm{~V}, 40$				
$10----\frac{1}{+}----\left\llcorner--\frac{1}{+}\right.$				
$0 \underset{170}{+}$	190	210	230	250Vac

Fig. 7-2 Shut-down behavior, definitions

8. DC-OK Relay Contact

This feature monitors the output voltage, which is produced by the power supply itself. It is independent of a back-fed voltage from a unit connected in parallel to the power supply output.

Contact closes	As soon as the output voltage reaches 90% of the adjusted output voltage.
Contact opens	As soon as the output voltage dips more than 10% below the adjusted output voltage. Short dips will be extended to a signal length of 250 ms . Dips shorter than 1 ms will be ignored.
Contact re-closes	As soon as the output voltage exceeds 90% of the adjusted voltage.
Contact ratings	max $60 \mathrm{Vdc} 0.3 \mathrm{~A}, 30 \mathrm{Vdc} 1 \mathrm{~A}, 30 \mathrm{Vac} 0.5 \mathrm{~A}$ resistive load min $\quad 1 \mathrm{~mA}$ at 5 Vdc min. permissible load Isolation voltage See dielectric strength table in section 21.

Fig. 8-1 DC-ok relay contact behavior

9. ShUT-DOWN InPut

This feature allows a switch-off of the output of the power supply with a signal switch or an external voltage. The shut-down function ramps down and has no safety feature included. The shut-down occurs immediately while the turn-on is delayed up to 350 ms . In a shut-down condition, the output voltage is $<2 \mathrm{~V}$ and the output power is $<0.5 \mathrm{~W}$.
The voltage between different minus pole output terminals must be below 1 V when units are connected in parallel. In a series operation of multiple power supplies only wiring option " A " with individual signal switches is allowed.
Please note that option C requires a current sink capability of the voltage source. Do not use a blocking diode.
Fig. 9-1 Activation of the shut-down input

Option A:	Option B: (via open collector) OFF: $\mathrm{I}>0.3 \mathrm{~mA}$ ON : $1<0.1 \mathrm{~mA}$	

QS40.244

10. Remote Control of Output Voltage

This feature is not supported by the QS40.244 unit. Choose the QS40.241 when this feature is needed.

11. INTERNAL DATA LOGGING

A protected microcontroller inside the power supply acquires and stores operating data during the life of the unit. The data can be downloaded with a small tool and special software by the PULS service and repair personnel, even also many times when the unit is defect. The data allows for better troubleshooting. Analysis of what happened before a failure can be determined much more accurately.

Acquired data:

- Family name of unit (QS40), revision of firmware
- Operational hours
- Expired portion of lifetime (combination of temperature and period of time)
- Maximum ambient temperatures with timestamp (max. 47 values)
- Maximal input voltages with timestamp (max. 47 values) and type of input voltage (AC or DC)
- Failure report (various internal errors)
- Number and timestamp (max. 20 values) of input overvoltage transients
- Number and timestamp (max. 20 values) of over-temperature shut-downs
- Number of turn-on sequences

The data will be acquired with a fixed sampling rate unless the peak detectors do trigger due to an abnormal condition. In such cases, the abnormal condition will be captured. Furthermore, data will be acquired every time shortly before the unit switches off.

12. Efficiency and Power Losses

AC 230V			
Efficiency	typ.	94.6%	at 24V, 40A
Average efficiency*)	typ.	93.8%	25% at $10 \mathrm{~A}, 25 \%$ at 20A, 25\% at 30A. 25\% at 40A
Power losses	typ.	3.2 W	with activated shut-down
	typ.	12.0 W	at 24V, 0A (no load)
	typ.	29.6 W	at 24V,20A (half load)
	typ.	54.8 W	at 24V,40A (full load)

*) The average efficiency is an assumption for a typical application where the power supply is loaded with 25% of the nominal load for 25% of the time, 50% of the nominal load for another 25% of the time, 75% of the nominal load for another 25% of the time and with 100% of the nominal load for the rest of the time.

Fig. 12-1 Efficiency vs. output current at 24V, typ.

Fig. 12-3 Efficiency vs. input voltage at 24V, 40A, typ.

Fig. 12-2 Losses vs. output current at 24V, typ.

Fig. 12-4 Losses vs. input voltage at 24V, 40A, typ.

13. LIFETIME EXPECTANCY AND MTBF

	AC 230V	
Calculated lifetime expectancy*)	$\left.311000 \mathrm{~h}^{*}\right)$	at $24 \mathrm{~V}, 20 \mathrm{~A}$ and $25^{\circ} \mathrm{C}$
	110000 h	at $24 \mathrm{~V}, 20 \mathrm{~A}$ and $40^{\circ} \mathrm{C}$
	$16900 \mathrm{~h}^{*)}$	at $24 \mathrm{~V}, 40 \mathrm{~A}$ and $25^{\circ} \mathrm{C}$
MTBF $^{* *)}$ SN 29500, IEC 61709	59000 h	at $24 \mathrm{~V}, 40 \mathrm{~A}$ and $40^{\circ} \mathrm{C}$
MTBF $^{* *)}$ MIL HDBK 217F	366000 h	at $24 \mathrm{~V}, 40 \mathrm{~A}$ and $40^{\circ} \mathrm{C}$
	659000 h	at $24 \mathrm{~V}, 40 \mathrm{~A}$ and $25^{\circ} \mathrm{C}$

*) The calculated lifetime expectancy shown in the table indicates the minimum operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors. Lifetime expectancy is specified in operational hours and is calculated according to the capacitor's manufacturer specification. The manufacturer of the electrolytic capacitors only guarantees a maximum life of up to 15 years (131400 h). Any number exceeding this value is a calculated theoretical lifetime which can be used to compare devices.
**) MTBF stands for Mean Time Between Failure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product. The MTBF figure is a statistical representation of the likelihood of a device to fail. A MTBF figure of e.g. 1000 000h means that statistically one unit will fail every 100 hours if 10000 units are installed in the field. However, it can not be determined if the failed unit has been running for 50000 h or only for 100 h .

14. Functional Diagram

Fig. 14-1 Functional diagram

15. Terminals and Wiring

The terminals are IP20 Finger safe constructed and suitable for field and factory wiring.

	Input	Output	DC-OK, Shut-down
Type	screw termination	screw termination	spring-clamp termination
Solid wire	$0.5-6 \mathrm{~mm}^{2}$	$0.5-16 \mathrm{~mm}^{2}$	$0.15-1.5 \mathrm{~mm}^{2}$
Stranded wire	$0.5-4 \mathrm{~mm}^{2}$	$0.5-10 \mathrm{~mm}^{2}$	$0.15-1.5 \mathrm{~mm}^{2}$
American Wire Gauge	AWG 20-10	AWG 22-8	AWG 26-14
Max. wire diameter	2.8 mm	5.2 mm	1.5 mm
	(including ferrules)	(including ferrules)	(including ferrules)
Wire stripping length	$7 \mathrm{~mm} / 0.28 \mathrm{inch}$	$12 \mathrm{~mm} / 0.5 \mathrm{inch}$	$7 \mathrm{~mm} / 0.28 \mathrm{inch}$
Screwdriver	3.5 mm slotted or cross-	3.5 mm or 5 mm slotted	3mm slotted
	head No 2	or cross-head No 2	(to open the spring)
Recommended tightening torque	$1 \mathrm{Nm}, 9 \mathrm{lb} . \mathrm{in}$	$2.3 \mathrm{Nm}, 20.5 \mathrm{lb}$.in	Not applicable

Instructions:

a) Use appropriate copper cables that are designed for minimum operating temperatures of:
$60^{\circ} \mathrm{C}$ for ambient up to $45^{\circ} \mathrm{C}$ and
$75^{\circ} \mathrm{C}$ for ambient up to $60^{\circ} \mathrm{C}$ minimum
$90^{\circ} \mathrm{C}$ for ambient up to $70^{\circ} \mathrm{C}$ minimum.
b) Follow national installation codes and installation regulations!
c) Ensure that all strands of a stranded wire enter the terminal connection!
d) Do not use the unit without PE connection.
e) Unused terminal compartments should be securely tightened.
f) Ferrules are allowed.

Daisy chaining:

Daisy chaining (jumping from one power supply output to the next) is allowed as long as the average output current through one terminal pin does not exceed 54A. If the current is higher, use a separate distribution terminal block as shown in Fig. 15-2.

Fig. 15-1 Daisy chaining of outputs

Fig. 15-2 Using distribution terminals

16. Front Side and User Elements

A Input Terminals (Screw terminals)
\mathbf{N}, \mathbf{L} Line input
$\mathcal{O}_{\text {...PE (Protective Earth) input }}$
B Output Terminals (Screw terminals, two pins per pole)
$+\quad$ Positive output

- \quad Negative (return) output

C "Parallel Use" "Single Use" Selector
Set jumper to "Parallel Use" when power supplies are connected in parallel to increase the output power. In order to achieve a sharing of the load current between the individual power supplies, the "parallel use" regulates the output voltage in such a manner that the voltage at no load is approx. 4\% higher than at nominal load. See also chapter 25.6. A missing jumper is equal to a "Single Use" mode.

D Output Voltage Potentiometer
Multi turn potentiometer;
Open the flap to set the output voltage.
Factory set: 24.1V at full output current, "Single Use" mode.
E DC-OK LED (green)
On, when the voltage on the output terminals is $>90 \%$ of the adjusted output voltage
F Overload LED (red)

- On, when the voltage on the output terminals is $<90 \%$ of the adjusted output voltage, or in case of a short circuit in the output.
- Flashing, when the shut-down has been activated or the unit has switched off due to over-temperature.
- Input voltage is required

G DC-OK Relay Contact

The DC-OK relay contact is synchronized with the DC-OK LED.
See chapter 8 for details.
H Shut-down Input
Allows the power supply to be shut down. Can be activated with a switch contact or an external voltage.

Indicators, LEDs

	Overload LED	DC-OK LED	DC-OK Contact
Normal mode	OFF	ON	Closed
During BonusPower	OFF	ON	Closed
Overload (Hiccup mode)	flashing	OFF	Open
Output short circuit	flashing	OFF	Open
Temperature Shut-down	flashing	OFF	Open
Active Shut-down input	flashing	OFF	Open
No input power	OFF	OFF	Open

17. EMC

The power supply is suitable for applications in industrial environment as well as in residential, commercial and light industry environment without any restrictions. A detailed EMC report is available on request.

EMC Immunity
According generic standards: EN 61000-6-1 and EN 61000-6-2

Electrostatic discharge	EN 61000-4-2	contact discharge air discharge	$\begin{aligned} & 8 \mathrm{kV} \\ & 15 \mathrm{kV} \end{aligned}$	Criterion A Criterion A
Electromagnetic RF field	EN 61000-4-3	$80 \mathrm{MHz}-2.7 \mathrm{GHz}$	10V/m	Criterion A
Fast transients (Burst)	EN 61000-4-4	input lines output lines DC-OK signal (coupling clamp)	$\begin{aligned} & 4 \mathrm{kV} \\ & 2 \mathrm{kV} \\ & 2 \mathrm{kV} \end{aligned}$	Criterion A Criterion A Criterion A
Surge voltage on input	EN 61000-4-5	$\begin{aligned} & \mathrm{L} \rightarrow \mathrm{~N} \\ & \mathrm{~L} \rightarrow \mathrm{PE}, \mathrm{~N} \rightarrow \mathrm{PE} \end{aligned}$	$\begin{aligned} & 2 \mathrm{kV} \\ & 4 \mathrm{kV} \end{aligned}$	Criterion A Criterion A
Surge voltage on output	EN 61000-4-5	$\begin{aligned} & +\rightarrow- \\ & +/-\rightarrow \mathrm{PE} \end{aligned}$	$\begin{aligned} & 1 \mathrm{kV} \\ & 1 \mathrm{kV} \\ & \hline \end{aligned}$	Criterion A Criterion A
Surge voltage on DC-OK	EN 61000-4-5	DC-OK signal \rightarrow PE	1 kV	Criterion A
Conducted disturbance	EN 61000-4-6	$0.15-80 \mathrm{MHz}$	10V	Criterion A
Mains voltage dips	EN 61000-4-11	0% of 200 Vac 40% of 200 Vac 70% of 200 Vac	0Vac for 20 ms 80 Vac for 200 ms 140 Vac for 500 ms	Criterion A Criterion C Criterion A
Voltage interruptions	EN 61000-4-11	0% of $200 \mathrm{Vac}(=0 \mathrm{~V}$)	5000 ms	Criterion C
Voltage sags	SEMI F47 0706	dips on the input voltage according to SEMI F47 standard		
		80% of 200 Vac 70% of 200 Vac 50% of 200 Vac	160 Vac for 1000 ms 140 Vac for 500 ms 100 Vac for 200 ms	Criterion A Criterion A Criterion A
Powerful transients	VDE 0160	over entire load range	$750 \mathrm{~V}, 1.3 \mathrm{~ms}$	Criterion A

Criterions:
A: Power supply shows normal operation behavior within the defined limits.
C: Temporary loss of function is possible. Power supply may shut-down and restarts by itself. No damage or hazards for the power supply will occur.

EMC Emission	According generic standards: EN 61000-6-3 and EN 61000-6-4	
Conducted emission input lines	EN 55011, EN 55022, FCC Part 15, CISPR 11, CISPR 22	Class B
Conducted emission output lines	IEC/CISPR 16-1-2, IEC/CISPR 16-2-1	10dB higher than average limits for DC power port according EN
Radiated emission	EN 55011, EN 55022	61000-6-3***)

Switching Frequencies	The power supply has four converters with four different switching frequencies included.	
Switching frequency 1	105 kHz	Resonant converter, nearly constant
Switching frequency 2	35 kHz to 150 kHz	PFC converter, input voltage and load dependent
Switching frequency 3	10 kHz to 300 kHz	Boost converter, output voltage and load dependent
Switching frequency 4	28 kHz to 40 kHz	Aux. converter, input voltage and load dependent

18. ENVIRONMENT

Operational temperature*)	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$	ce output power according Fig. 18-1
Storage temperature	-40 to $+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	for storage and transportation
Output de-rating	$24 \mathrm{~W} /{ }^{\circ} \mathrm{C}$	$60-70^{\circ} \mathrm{C}$ ($140^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$)
Humidity**	5 to 95\% r.H.	IEC 60068-2-30
Vibration sinusoidal	```2-17.8Hz: \pm1.6mm; 17.8-500Hz: 1g ***) 2 hours / axis```	IEC 60068-2-6
Shock	$15 \mathrm{~g} 6 \mathrm{~ms}, 10 \mathrm{~g} 11 \mathrm{~ms}$ ***) 3 bumps / direction, 18 bumps in total	IEC 60068-2-27
Altitude	0 to 2000 m (0 to 6560 ft) 2000 to 6000 m (6560 to 20000 ft)	without any restrictions reduce output power or ambient temperature, see Fig. 18-2 IEC 62103, EN 50178, overvoltage category II
Altitude de-rating	$60 \mathrm{~W} / 1000 \mathrm{~m}$ or $5^{\circ} \mathrm{C} / 1000 \mathrm{~m}$	> 2000m (6500ft), see Fig. 18-2
Over-voltage category	$\begin{aligned} & \text { III } \\ & \text { II } \end{aligned}$	IEC 62103, EN 50178, altitudes up to 2000 m altitudes from 2000 m to 6000 m
Degree of pollution	2	IEC 62103, EN 50178, not conductive
LABS compatibility	The unit does not release any silicone or other LABS-critical substances and is suitable for use in paint shops.	
*) Operational temperature is the same as the ambient or surrounding temperature and is defined as the air temperature 2 cm below the unit. **) Do not energize while condensation is present. ***) Higher levels allowed when using the wall mounting bracket ZM2.WALL		

Fig. 18-1 Output current vs. ambient temp.

Fig. 18-2 Output current vs. altitude

QS40.244

19. Protection Features

Output protection	Electronically protected against overload, no-load and short-circuits*)	
Output over-voltage protection	typ. 30Vdc max. 32Vdc	In case of an internal power supply defect, a redundant circuit limits the maximum output voltage. The output shuts down and automatically attempts to restart.
Degree of protection	IP 20	EN/IEC 60529 Caution: For use in a controlled environment according to CSA 22.2 No 107.1-01. e.g. screws, small parts
Penetration protection	$>5 \mathrm{~mm}$	Output shut-down with automatic restart
Over-temperature protection	yes	MOV (Metal Oxide Varistor)
Input transient protection	included	not user replaceable
Internal input fuse		

*) In case of a protection event, audible noise may occur.

20. SAFETY FEATURES

Input / output separation*)	SELV PELV double or reinforced in	IEC/EN 60950-1 IEC/EN 60204-1, EN 50178, IEC 62103, IEC 60364-4-41 tion
Class of protection	1	PE (Protective Earth) connection required
Isolation resistance	> 5MOhm	input to output, 500Vdc
PE resistance	< 0.10hm	
Touch current (leakage current)	typ. $0.59 \mathrm{~mA} / 1.38 \mathrm{~mA}$ max. $0.75 \mathrm{~mA} / 1.74 \mathrm{~mA}$	230Vac, 50Hz, TN-,TT-mains / IT-mains $264 \mathrm{Vac}, 50 \mathrm{~Hz}$, TN-,TT-mains / IT-mains

*) double or reinforced insulation

QS40.244
ainnension
Q-Series
24V, 40A, Single Phase Input

21. DieLectric Strength

The output voltage is floating and has no ohmic connection to the ground. Type and factory tests are conducted by the manufacturer. Field tests may be conducted in the field using the appropriate test equipment which applies the voltage with a slow ramp (2 s up and 2 s down). Connect all input-terminals together as well as all output poles before conducting the test. When testing, set the cut-off current settings to the value in the table below.

		A	B	C	D
Type test	60s	2500Vac	3000Vac	500 Vac	500 Vac
Factory test	5 s	2500 Vac	2500Vac	500 Vac	500 Vac
Field test	5s	2000Vac	2000Vac	500 Vac	500 Vac
Cut-off current setting		$>20 \mathrm{~mA}$	$>20 \mathrm{~mA}$	> 40mA	> 1mA

To fulfil the PELV requirements according to EN60204-1 § 6.4.1, we recommend that either the + pole, the - pole or any other part of the output circuit shall be connected to the protective earth system. This helps to avoid situations in which a load starts unexpectedly or can not be switched off when unnoticed earth faults occur.
B*) When testing input to DC-OK ensure that the max. voltage between DC-OK and the output is not exceeded (column D). We recommend connecting DC-OK pins and the output pins together when performing the test.

22. Approvals

| EC Declaration of Conformity | The CE mark indicates conformance with the
 - EMC directive 2004/108/EC,
 - Low-voltage directive (LVD) 2006/95/EC and
 - RoHS directive 2011/65/EC. |
| :--- | :--- | :--- |
| IEC 60950-1 $2^{\text {nd }}$ Edition | CB Scheme,
 Information Technology Equipment
 Applicable for altitudes up to 2000m. |
| UL 508 | Listed for use as Industrial Control Equipment;
 U.S.A. (UL 508) and Canada (C22.2 No. 107-1-01);
 E-File: E198865 |
| UL 60950-1, 2 ${ }^{\text {nd }}$ Edition | Recognized for use as Information Technology Equipment,
 Level 5; U.S.A. (UL 60950-1) and Canada (C22.2 No. 60950-1);
 E-File: E137006
 Applicable for altitudes up to 2000m. |
| GEMI F47 | GL (Germanischer Lloyd) classified and
 ABS (American Bureau for Shipping) PDA
 Environmental category: C, EMC2
 Marine and offshore applications |
| SOST P | SEMI F47-0706
 Ride-through compliance for semiconductor industry.
 Full SEMI range compliance |

23. Physical Dimensions and Weight

Weight	$1800 \mathrm{~g} / 3.97 \mathrm{lb}$
DIN-Rail	Use 35 mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15 mm . The DIN-rail height must be added to the unit depth (127mm) to calculate the total required installation depth.
Installation Clearances	See chapter 2

Fig. 23-2 Side view

24. Accessories

24.1. ZM2.WALL-WALL MOUNTING BRACKET

This bracket is used to mount specific DIMENSION units onto a flat surface without utilizing a DIN-Rail.

24.2. UF20.241 - BuFFER MODULE

This buffer unit is a supplementary device for DC 24 V power supplies. It delivers power to bridge typical mains failures
 or extends the hold-up time after turn-off of the AC power. In times when the power supply provides sufficient voltages, the buffer unit stores energy in integrated electrolytic capacitors. In case of mains
 voltage fault, this energy is released again in a regulated process. One buffer module can deliver 20A. To buffer the full output current of 40A, two buffer modules are needed in parallel.
The buffer unit does not require any control wiring. It can be added in parallel to the load circuit at any given point. Buffer units can be added in parallel to increase the output ampacity or the hold-up time.

24.3. YR80.242-Redundancy Module

The YR80.242 is equipped with two input channels (40A each), which are individually decoupled by utilizing mosfet technology. The output current can go as high as 80A. Using mosfets instead of diodes reduces the heat generation and the voltage drop between input and output. The YR80.242 does not require an additional auxiliary voltage and is selfpowered even in case of a short circuit across the output.
Due to the low power losses, the unit is very slender and only requires 46 mm width on the DIN-rail.

24.4. YR40.245-Redundancy Module

The YR40.245 is a 40A single channel redundancy module, which is equipped with a plug connector on the output. The plug connector allows replacing the power supply or the redundancy module while the system is running. The plug connector avoids that the output wires can touch and short the load circuit.
The YR40.245 is very slender and only requires 46 mm width on the DIN-rail. It also utilizes mosfet technology instead of diodes for low heat generation and a minimal voltage drop between input and output. It does not require an additional auxiliary voltage and is selfpowered even in case of a short circuit across the output.

Fig. 24-1 Typical 1+1 Redundant configuration for 40A with a dual redundancy module

Fig. 24-2 Typical N+1 or 1+1 Redundant configuration for 40A with multiple YR40. 245 redundancy modules

25. Application Notes

25.1. Repetitive Pulse Loading

Typically, a load current is not constant and varies over time. This power supply is designed to support loads with a higher short-term power demand (=BonusPower®). The short-term duration is hardware controlled by an output power manager and is available on a repeated basis. If the BonusPower ${ }^{\circledR}$ load lasts longer than the hardware controller allows it, the output voltage will dip and the next BonusPower ${ }^{\oplus}$ is available after the BonusPower ${ }^{\oplus}$ recovery time (see chapter 6) has elapsed.
To avoid this, the following rules must be met:
a) The power demand of the pulse must be below 150% of the nominal output power.
b) The duration of the pulse power must be shorter than the allowed BonusPower ${ }^{\oplus}$ time. (see output section)
c) The average (R.M.S.) output current must be below the specified continuous output current.

If the R.M.S. current is higher, the unit will respond with a thermal shut-down after a period of time. Use the maximum duty cycle curve (Fig. 25-2) to check if the average output current is below the nominal current.
d) The duty cycle must be below 0.75 .

Fig. 25-1 Repetitive pulse loads, definitions

Fig. 25-2 Max. duty cycle curve

Example: A load is powered continuously with 480 W ($=50 \%$ of the rated output load). From time to time a peak power of 1440W ($=150 \%$ of the rated output load) is needed for 1 second.
The question is: How often can this pulse be supplied without overloading the power supply?

- Make a vertical line at $P_{\text {PEAK }}=150 \%$ and a horizontal line where the vertical line crosses the $P_{0}=50 \%$ curve. Read the max. duty cycle from the duty cycle-axis (= 0.37)
- Calculate the required pause (base load) length T_{0} :
- Result: The required pause length $=1.7 \mathrm{~s}$
- Max. repetition rate $=$ pulse + pause length $=\underline{\mathbf{2 . 7} \mathbf{s}}$

$$
\mathbf{T}_{\mathbf{0}}=\frac{\text { Tpeak }-(\text { DutyCycle } \times \text { Tpeak })}{\text { DutyCycle }}=\frac{1 \mathrm{~s}-(0.37 \times 1 \mathrm{~s})}{0.37}=\mathbf{1 . 7 \mathbf { s }}
$$

More examples for pulse load compatibility:

P PEAK	P_{0}	$\mathrm{~T}_{\text {PEAK }}$	T_{0}
1440W	960 W	1 s	$>25 \mathrm{~s}$
1440 W	0 W	1 s	$>1.3 \mathrm{~s}$
1200 W	480 W	1 s	$>0.75 \mathrm{~s}$

P $_{\text {PEAK }}$	P_{0}	$\mathrm{~T}_{\text {PEAK }}$	T_{0}
1440 W	480 W	0.1 s	$>0.16 \mathrm{~s}$
1440 W	480 W	1 s	$>1.6 \mathrm{~s}$
1440 W	480 W	3 s	$>4.9 \mathrm{~s}$

QS40.244

25.2. Peak Current Capability

The power supply can deliver peak currents (up to several milliseconds) which are higher than the specified short term currents.

This helps to start current demanding loads. Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady-state current and usually exceeds the nominal output current (including the BonusPower ${ }^{\ominus}$). The same situation applies when starting a capacitive load.
The peak current capability also ensures the safe operation of subsequent circuit breakers of load circuits. The load branches are often individually protected with circuit breakers or fuses. In case of a short or an overload in one branch circuit, the fuse or circuit breaker need a certain amount of over-current to open in a timely manner. This avoids voltage loss in adjacent circuits.
The extra current (peak current) is supplied by the power converter and the built-in large sized output capacitors of the power supply. The capacitors get discharged during such an event, which causes a voltage dip on the output. The following two examples show typical voltage dips:

Fig. 25-3 Peak load with $2 x$ the nominal current for 50 ms , typ.

80A Peak load (resistive) for 50 ms
Output voltage dips from 24 V to 20 V .

Fig. 25-4 Peak load with $5 x$ the nominal current for 5ms, typ.

200A Peak load (resistive) for 5 ms Output voltage dips from 24 V to 12 V .

Please note: The DC-OK relay triggers when the voltage dips more than 10% for longer than 1 ms .

Peak current voltage dips	typ. typ.	from 24 V to 20 V from 24 V to 12 V	at 80 A for 50 ms , resistive load
	typ.	from 24 V to 12 V	at 200 A for 2 ms , resistive load

25.3. External Input Protection

The unit is tested and approved for branch circuits up to 30A (U.S.A.) and 32A (IEC). An external protection is only required if the supplying branch has an ampacity greater than this. Check also local codes and local requirements. In some countries local regulations might apply.
If an external fuse is necessary or utilized, minimum requirements need to be considered to avoid nuisance tripping of the circuit breaker. A minimum value of 10A B- or 8A C-Characteristic breaker should be used.

25.4. Charging of Batteries

The power supply can be used to charge lead-acid or maintenance free batteries. (Two 12 V batteries in series)

Instructions for charging batteries:

a) Set output voltage (measured at no load and at the battery end of the cable) very precisely to the end-of-charge voltage.

End-of-charge voltage	27.8 V	27.5 V	27.15 V	26.8 V
Battery temperature	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$

b) Use a 50 A or 63 A circuit breaker (or blocking diode) between the power supply and the battery.
c) Ensure that the output current of the power supply is below the allowed charging current of the battery.
d) Use only matched batteries when putting 12 V types in series.
e) The return current to the power supply (battery discharge current) is typ. 35 mA when the power supply is switched off (except in case a blocking diode is utilized).

25.5. Output Circuit Breakers

Standard miniature circuit breakers (MCB's or UL1077 circuit breakers) are commonly used for AC-supply systems and may also be used on DC branches.
MCB's are designed to protect wires and circuits. If the ampere value and the characteristics of the MCB are adapted to the wire size that is used, the wiring is considered as thermally safe regardless of whether the MCB opens or not.
To avoid voltage dips and under-voltage situations in adjacent 24 V branches which are supplied by the same source, a fast (magnetic) tripping of the MCB is desired. A quick shutdown within 10 ms is necessary corresponding roughly to the ride-through time of PLC's. This requires power supplies with high current reserves and large output capacitors. Furthermore, the impedance of the faulty branch must be sufficiently small in order for the current to actually flow. The best current reserve in the power supply does not help if Ohm's law does not permit current flow. The following table has typical test results showing which B- and C-Characteristic MCBs magnetically trip depending on the wire cross section and wire length.

Fig. 25-5 Test circuit

S1... Fault simulation switch

Maximal wire length*) for a fast (magnetic) tripping:

	$\mathbf{0 . 7 5 m m}$			
	$\mathbf{1 . 0} \mathbf{m m}^{\mathbf{2}}$	$\mathbf{1 . 5 \mathbf { m m } ^ { \mathbf { 2 } }}$	$\mathbf{2 . 5 \mathbf { m m } ^ { \mathbf { 2 } }}$	
$\mathbf{C - 2 A}$	28 m	38 m	54 m	78 m
$\mathbf{C - 3 A}$	26 m	35 m	50 m	74 m
$\mathbf{C - 4 A}$	19 m	26 m	38 m	58 m
$\mathbf{C - 6 A}$	12 m	16 m	24 m	32 m
$\mathbf{C - 8 A}$	9 m	12 m	17 m	25 m
$\mathbf{C - 1 0 A}$	7 m	10 m	15 m	21 m
$\mathbf{C - 1 3 A}$	4 m	5 m	7 m	11 m
$\mathbf{B - 6 A}$	19 m	26 m	35 m	59 m
$\mathbf{B - 1 0 A}$	11 m	17 m	26 m	37 m
$\mathbf{B - 1 3 A}$	10 m	13 m	21 m	32 m
$\mathbf{B - 1 6 A}$	8 m	11 m	14 m	24 m
$\mathbf{B - 2 0 A}$	4 m	6 m	8 m	14 m

*) Don't forget to consider twice the distance to the load (or cable length) when calculating the total wire length (+ and - wire).

25.6. Parallel Use to Increase Output Power

Power supplies from the same series (Q-Series) can be paralleled to increase the output power. The output voltage shall be adjusted to the same value ($\pm 100 \mathrm{mV}$) in "Single use" mode with the same load conditions on all units, or the units can be left with the factory settings. After the adjustments, the jumper on the front of the unit shall be moved from "Single use" to "Parallel use", in order to achieve load sharing. The "Parallel use" mode regulates the output voltage in such a manner that the voltage at no load is approx. 4\% higher than at nominal load. See also chapter 6 . If no jumper is plugged in, the unit is in "Single use" mode. Factory setting is also "Single use" mode.

If more than three units are connected in parallel, a fuse or circuit breaker with a rating of 50A or 63A is required on each output. Alternatively, a diode or redundancy module can also be utilized.
Energize all units at the same time to avoid the overload Hiccup ${ }^{P L U S}$ mode. It also might be necessary to cycle the input power (turn-off for at least five seconds), if the output was in Hiccup ${ }^{P L U S}$ mode due to overload or short circuits and the required output current is higher than the current of one unit.

Keep an installation clearance of 15 mm (left / right) between two power supplies and avoid installing the power supplies on top of each other. Do not use power supplies in parallel in mounting orientations other than the standard mounting orientation (terminals on the bottom of the unit) or in any other condition where a derating of the output current is required (e.g. altitude, above $60^{\circ} \mathrm{C}, \ldots$).

Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies.

25.7. Parallel Use for Redundancy

Power supplies can be paralleled for redundancy to gain higher system availability. Redundant systems require a certain amount of extra power to support the load in case one power supply unit fails. The simplest way is to put two power supplies in parallel. This is called a $1+1$ redundancy. In case one power supply unit fails, the other one is automatically able to support the load current without any interruption. Redundant systems for a higher power demand are usually built in a N+1 method. E.g. five power supplies, each rated for 40A are paralleled to build a 160A redundant system. For $\mathrm{N}+1$ redundancy the same restrictions apply as for increasing the output power, see also chapter 25.6.
Please note: This simple way to build a redundant system does not cover failures such as an internal short circuit in the secondary side of the power supply. In such a case, the defective unit becomes a load for the other power supplies and the output voltage can not be maintained any more. This can be avoided by utilizing redundancy modules, which have decoupling devices (diodes or mosfets) included. Further information and wiring configurations can be found in chapter 24.3 and 24.4.

Recommendations for building redundant power systems:
a) Use separate input fuses for each power supply. A separate source for each supply when possible increases the reliability of the redundant system.
b) Set the power supply into "Parallel Use" mode.
c) Monitor the individual power supply units. Therefore, use the DC-OK relay contact of the QS40 power supply.
d) It is desirable to set the output voltages of all units to the same value ($\pm 100 \mathrm{mV}$) or leave it at the factory setting.

