

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

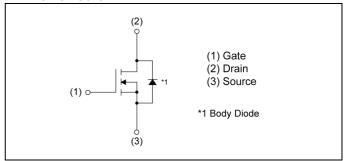
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Nch 600V 15A Power MOSFET


V _{DSS}	600V
R _{DS(on)} (Max.)	0.29Ω
I _D	±15A
P _D	184W

● Outline TO-263 SC-83 LPT(S) (2) (3)

Features

- 1) Low on-resistance.
- 2) Ultra fast switching speed.
- 3) Parallel use is easy.
- 4) Pb-free lead plating; RoHS compliant

•Inner circuit

Packaging specifications

● I ackaç	Jing specifications	
	Packing	Embossed Tape
	Reel size (mm)	330
Туре	Tape width (mm)	24
	Basic ordering unit (pcs)	1000
	Taping code	TL
	Marking	R6015KNJ

Application

Switching

● **Absolute maximum ratings** (T_a = 25°C ,unless otherwise specified)

Parameter		Symbol	Value	Unit
Drain - Source voltage		V_{DSS}	600	V
Continuous drain current (T _c = 25	5°C)	I _D *1	±15	Α
Pulsed drain current		I _{DP} *2	±45	Α
static		\ /	±20	V
Gate - Source voltage	AC(f>1Hz)	V_{GSS}	±30	V
Avalanche current, single pulse		I _{AS}	2.4	А
Avalanche energy, single pulse		E _{AS} *3	284	mJ
Power dissipation (T _c = 25°C)	P _D	184	W	
Junction temperature		T _j	150	°C
Operating junction and storage temperature range		T _{stg}	-55 to +150	°C

●Thermal resistance

Dougrantou	Cumala al	Values			1.1
Parameter	Symbol	Min.	Тур.	Max.	Unit
Thermal resistance, junction - case	R _{thJC} *4	-	-	0.68	°C/W
Thermal resistance, junction - ambient	R _{thJA} *5	-	-	80	°C/W
Soldering temperature, wavesoldering for 10s	T _{sold}	-	-	265	°C

• Electrical characteristics $(T_a = 25^{\circ}C)$

Parameter	Cumb al	Conditions		Values		
- Farameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Drain - Source breakdown voltage	V _{(BR)DSS}	$V_{GS} = 0V$, $I_D = 1mA$	600	-	-	V
		V _{DS} = 600V, V _{GS} = 0V				
Zero gate voltage drain current	I _{DSS}	T _j = 25°C	-	-	100	μΑ
		T _j = 125°C	-	-	1000	
Gate - Source leakage current	I _{GSS}	V _{GS} = ±20V, V _{DS} = 0V	-	-	±100	nA
Gate threshold voltage	$V_{GS(th)}$	V _{DS} = 10V, I _D = 1mA	3	-	5	V
		V _{GS} = 10V, I _D = 6.5A				
Static drain - source on - state resistance	R _{DS(on)} *6	$T_j = 25^{\circ}C$	-	0.26	0.29	Ω
		T _j = 125°C	-	0.56	-	
Gate resistance	R_{G}	f = 1MHz, open drain	-	2.3	-	Ω

● Electrical characteristics (T_a = 25°C)

Downston	Cy reads ad	Conditions	Values			Lloit
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Forward Transfer Admittance	Y _{fs} *6	V _{DS} = 10V, I _D = 7.5A	4.0	8.0	-	S
Input capacitance	C _{iss}	V _{GS} = 0V	-	1050	-	,
Output capacitance	C _{oss}	V _{DS} = 25V	-	900	-	pF
Reverse transfer capacitance	C _{rss}	f = 1MHz	-	40	-	
Turn - on delay time	t _{d(on)} *6	$V_{DD} \simeq 300V$, $V_{GS} = 10V$	-	30	-	
Rise time	t _r *6	I _D = 7.5A	-	30	-	
Turn - off delay time	t _{d(off)} *6	R _L ≃ 40.2Ω	-	50	-	ns
Fall time	t _f *6	$R_G = 10\Omega$	-	15	-	

● Gate charge characteristics (T_a = 25°C)

Davagastav	Cymaela al	Conditions	Values			1.114
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Total gate charge	Q_g^{*6}	V _{DD} ≈ 300V	-	27.5	-	
Gate - Source charge	Q _{gs} *6	I _D = 15A	-	7.5	-	nC
Gate - Drain charge	Q _{gd} *6	V _{GS} = 10V	-	12	-	
Gate plateau voltage	V _(plateau)	V _{DD} ≈ 300V, I _D = 15A	-	6.6	-	V

^{*1} Limited only by maximum channel temperature allowed.

^{*2} Pw ≤ 10µs, Duty cycle ≤ 1%

^{*3} L \doteqdot 100mH, V_{DD}=50V, R_G=25 Ω , STARTING T_i=25 $^{\circ}$ C

^{*4} T_C=25°C

^{*5} Mounted on a epoxy PCB FR4 (25mm x 27mm x 0.8mm)

^{*6} Pulsed

● Body diode electrical characteristics (Source-Drain) (T_a = 25°C)

Parameter	Cymah al	Conditions		Unit			
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Orill	
Continuous forward current	I _S *1	T - 25°C	1	1	15	Α	
Pulse forward current	I _{SP} *2	T _C = 25°C	-	-	45	Α	
Forward voltage	V _{SD} *6	V _{GS} = 0V, I _S = 15A	-	-	1.5	V	
Reverse recovery time	t _{rr} *6		-	415	-	ns	
Reverse recovery charge	Q _{rr} *6	I _S = 15A di/dt = 100A/µs	-	5.0	-	μC	
Peak reverse recovery current	I _{rrm} *6	- απατ 100/ νμο	-	24	-	Α	

● Typical transient thermal characteristics

Symbol	Value	Unit
R _{th1}	0.0929	
R _{th2}	0.365	K/W
R _{th3}	0.615	

Symbol	Value	Unit
C _{th1}	0.00162	
C _{th2}	0.00548	Ws/K
C _{th3}	0.176	

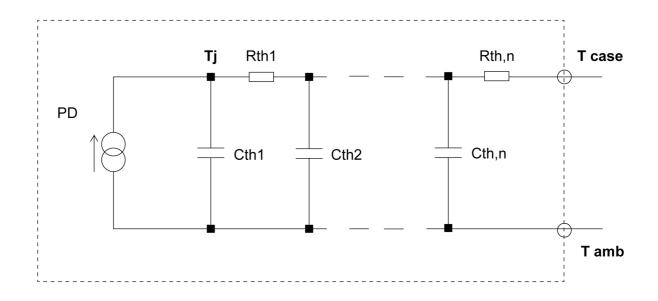


Fig.1 Power Dissipation Derating Curve

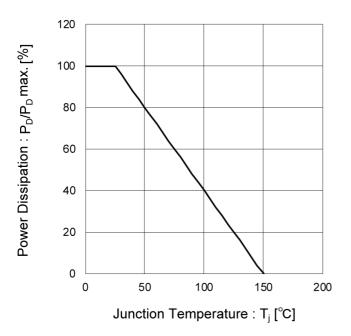


Fig.2 Maximum Safe Operating Area

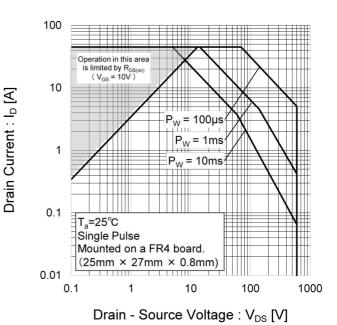
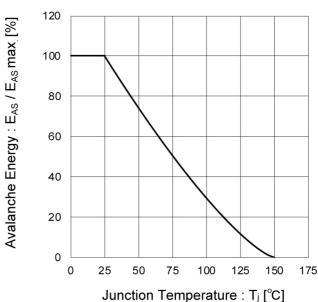



Fig.3 Avalanche Energy Derating

Curve vs. Junction Temperature

ROHM

5/12

Fig.4 Typical Output Characteristics(I)

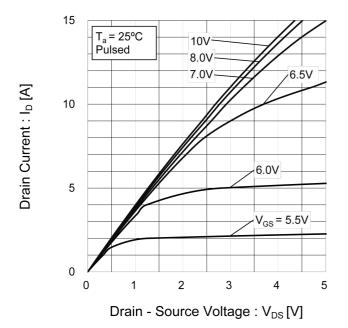
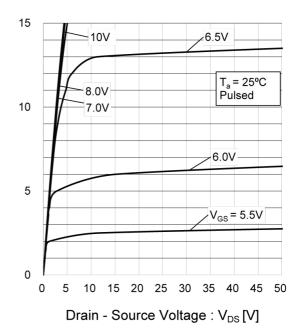



Fig.5 Typical Output Characteristics(II)

Drain Current : I_D [A]

Fig.6 Breakdown Voltage vs.

Junction Temperature

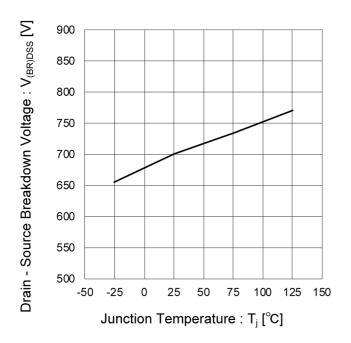


Fig.7 Typical Transfer Characteristics

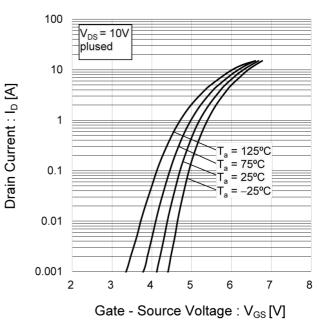


Fig.8 Gate Threshold Voltage vs.
Junction Temperature

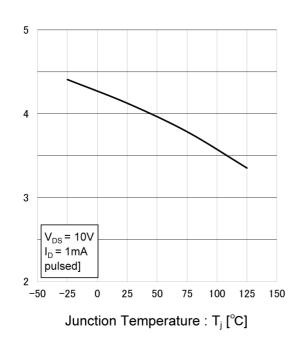
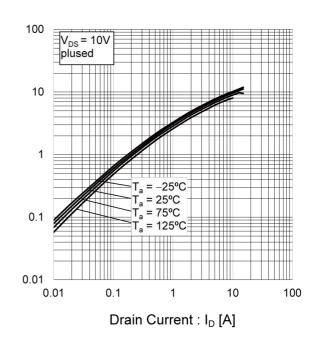



Fig.9 Forward Transfer Admittance vs.
Drain Current

Gate Threshold Voltage: V_{GS(th)} [V]

Transconductance : g_{fs} [S]

Fig.10 Static Drain - Source On - State Resistance vs. Gate Source Voltage

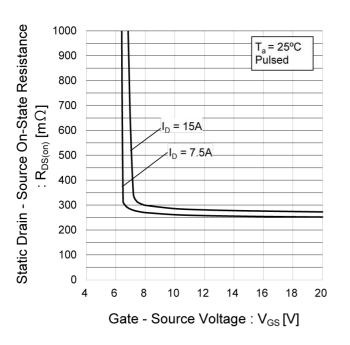


Fig.11 Static Drain - Source On - State Resistance vs. Junction Temperature

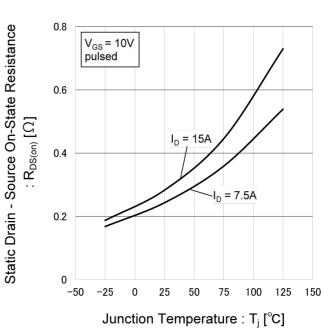
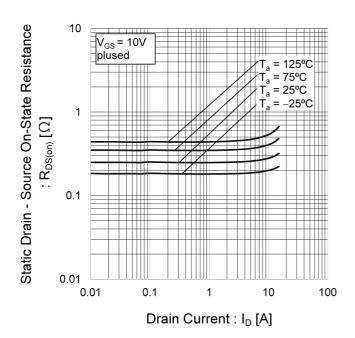



Fig.12 Static Drain - Source On - State Resistance vs. Drain Current(I)

8/12

Fig.13 Typical Capacitance vs.

Drain - Source Voltage

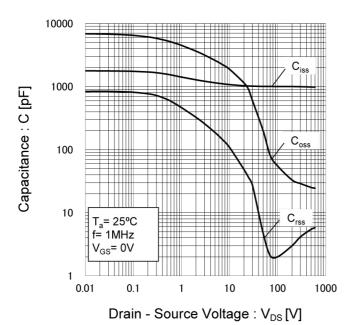


Fig.14 Switching Characteristics

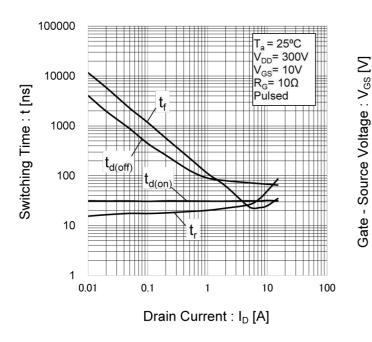


Fig.15 Dynamic Input Characteristics

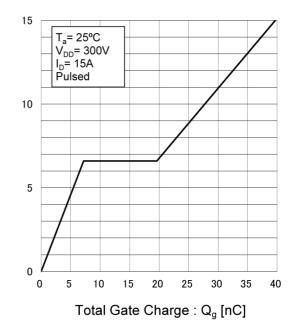


Fig.16 Inverse Diode Forward Current vs. Source - Drain Voltage

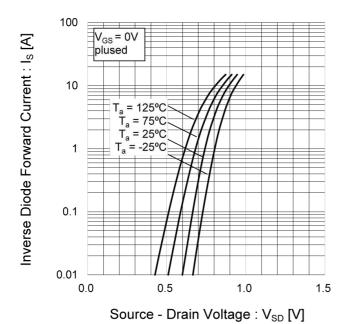
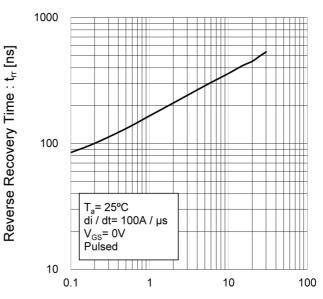



Fig.17 Reverse Recovery Time vs.
Inverse Diode Forward Current

Inverse Diode Forward Current: I_S [A]

Measurement circuits

Fig.1-1 Switching Time Measurement Circuit

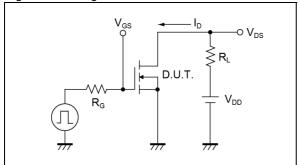


Fig.2-1 Gate Charge Measurement Circuit

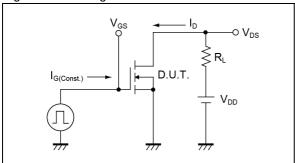


Fig.3-1 Avalanche Measurement Circuit

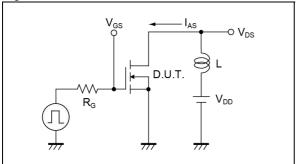


Fig.4-1 dv/dt Measurement Circuit

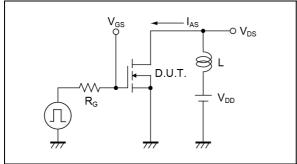


Fig.5-1 dv/dt Measurement Circuit

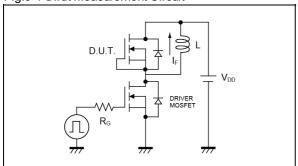


Fig.1-2 Switching Waveforms

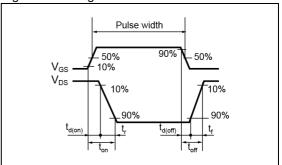


Fig.2-2 Gate Charge Waveform

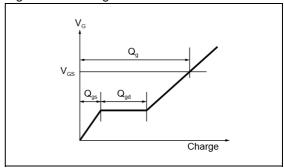
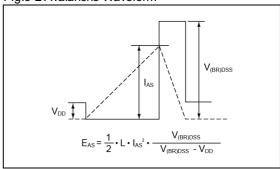
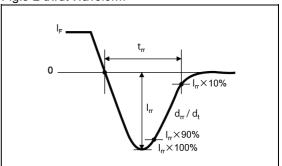


Fig.3-2 Avalanche Waveform

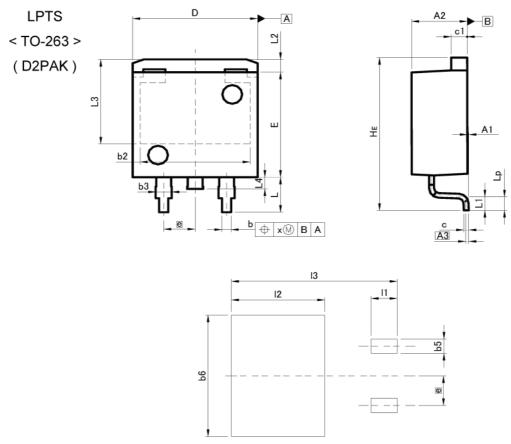

Fig.4-2 dv/dt Waveform

Fig.5-2 dv/dt Waveform

Dimensions

Pattern of terminal position areas [Not a pattern of soldering pads]

DIM	MILIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A1	0.00	0.30	0.000	0.012
A2	4.30	4.70	0.169	0.185
A3	0	25	0.0	10
b	0.68	0.98	0.027	0.039
b2	8.9	90	0.3	350
b3	1.14	1.44	0.045	0.057
С	0.30	0.60	0.012	0.024
c1	1.10	1.50	0.043	0.059
D	9.80	10.40	0.386	0.409
E	8.80	9.20	0.346	0.362
е	2.	54	0.100	
HE	12.80	13.40	0.504	0.528
L	2.70	3.30	0.106	0.130
L1	0.90	1.50	0.035	0.059
L2	1.	10	0.043	
L3	7.:	25	0.285	
L4	1.0	00	0.0	39
Lp	0.90	1.50	0.035	0.059
X	=	0.25	U.T.	0.010
DIM T	MILIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX

 DIM
 MIN
 MAX
 MIN
 MAX

 b5
 1.23
 0.049

 b6
 10.40
 0.409

 11
 2.10
 0.083

 12
 7.55
 0.297

 13
 13.40
 0.528

Dimension in mm/inches

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors.

 Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 7) The Products specified in this document are not designed to be radiation tolerant.
- 8) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 11) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 12) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 13) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

R6015KNJ - Web Page

Distribution Inventory

Part Number	R6015KNJ
Package	LPTS(D2PAK)
Unit Quantity	1000
Minimum Package Quantity	1000
Packing Type	Taping
Constitution Materials List	inquiry
RoHS	Yes