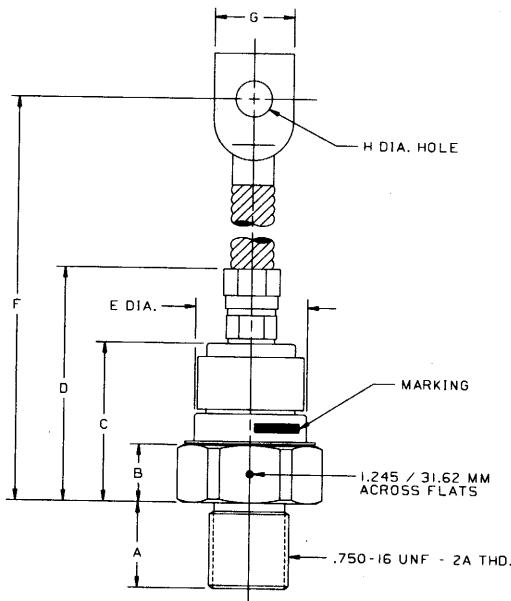


Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

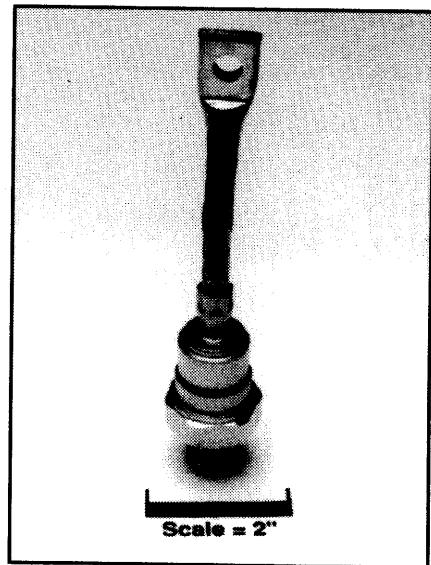
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


Fast Recovery Rectifier
 250 Amperes Average
 1600 Volts

SYM.	A	B	C	D	E	F	G	H	J	K

MM	20.6	14.0	38.1	58.4	26.7	138.2	18.5	8.71	-----	-----

ALL DIMENSIONS ARE REFERENCE

R602_25/R603_25 (Outline Drawing)

R602_25/R603_25
 Fast Recovery Rectifier
 250 Amperes Average, 1600 Volts

Features:

- Fast Recovery Times
- Soft Recovery Characteristics
- Standard and Reverse Polarities
- Flag Lead and Stud Top Terminals Available
- High Surge Current Ratings
- High Rated Blocking Voltages
- Special Electrical Selection for Parallel and Series Operation
- Glazed Ceramic Seal Gives High Voltage Creepage and Strike Paths
- Special Selection of Recovery Characteristics Available

Ordering Information:

Select the complete part number you desire from the following table:

Type	Voltage		Current		Recovery Time		Leads	
	V _{RRM} (Volts)	Code	I _{F(av)} (A)	Code	t _{rr} (μsec)	Code	Case	Code
R602 (Standard Polarity)	400	04	250	25	1.0	HS	DO-9	YA
	600	06						
	800	08						
	1000	10						
R603 (Reverse Polarity)	1200	12						
	1400	14						
	1600	16						

Example: Type R602 rated at 250A average with V_{RRM} = 1600V,
 Recovery Time = 1.0μsec, order as:

Type				Voltage		Current		Time		Leads	
R	6	0	2	1	6	2	5	HS	Y	A	

Applications:

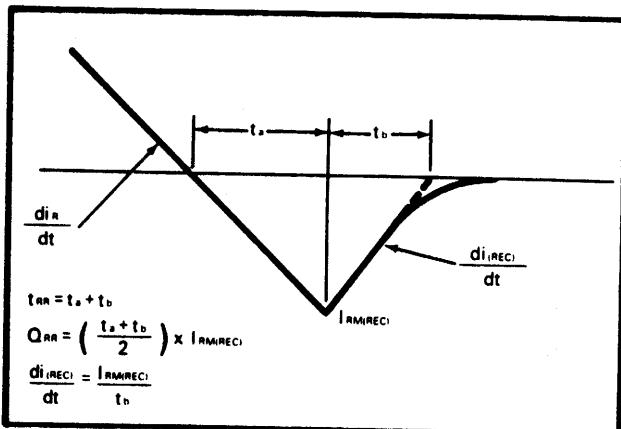
- Inverters
- Choppers
- Transmitters
- Free Wheeling Diode

Powerex, Inc., 200 Hillis Street, Youngwood, Pennsylvania 15697-1800 (412) 925-7272
 Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14

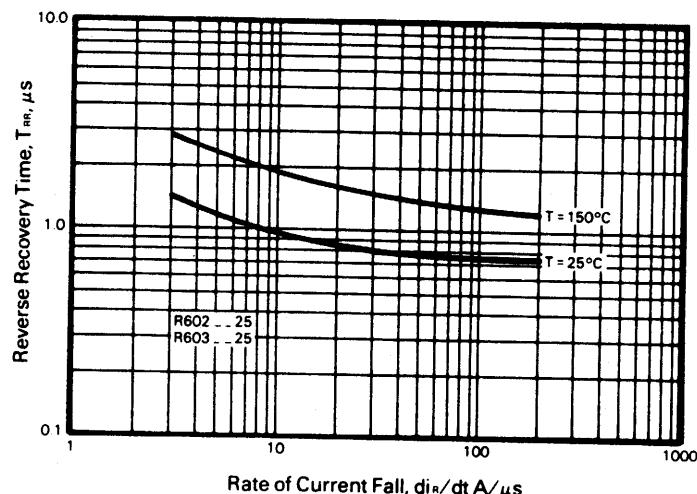
R602_25/R603_25
Fast Recovery Rectifier
 250 Amperes Average, 1600 Volts

Absolute Maximum Ratings

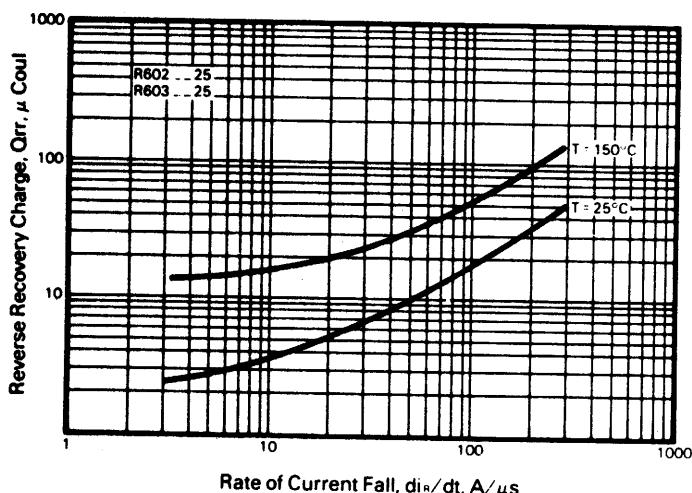
Characteristics	Symbol	R602_25/R603_25	Units
RMS Forward Current	$I_F(\text{rms})$	400	Amperes
Average Forward Current	$I_F(\text{av})$	250	Amperes
One-half Cycle Surge Current	I_{FSM}	4500	Amperes
I^2t (for Fusing), Times ≥ 8.3 milliseconds	I^2t	85000	$A^2\text{sec}$
Storage Temperature	T_{stg}	-40 to +190	$^{\circ}\text{C}$
Operating Temperature	T_j	-40 to +150	$^{\circ}\text{C}$
Mounting Torque (Lubricated)		360	in-lb

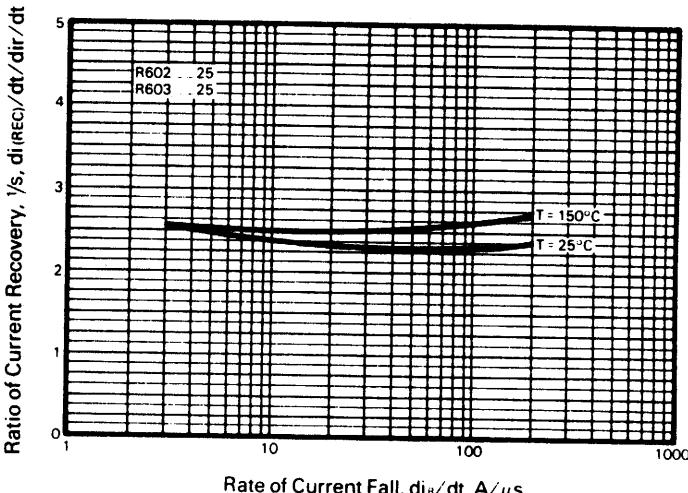

Electrical and Thermal Characteristics

Characteristics	Symbol	Test Conditions	R602_25/R603_25	Units
Current - Conducting State Maximums				
Forward Voltage Drop	V_{FM}	$T_j = 25^{\circ}\text{C}$, $I_{\text{FM}} = 800\text{A}$	2.0	Volts
Voltage - Blocking State Maximums				
Repetitive Peak Reverse Voltage (Rated Limit)	V_{RRM}		1600	Volts
Non-rep. Trans. Peak Rev. Voltage (Rated Limit)	V_{RSM}	$t \leq 5.0\text{msec}$	1800	Volts
Reverse Leakage Current, mA peak	I_{RRM}	T_j at max., $V_{\text{RRM}} = \text{Rated}$	50	mA
Switching				
Maximum Reverse Recovery Time	t_{rr}	$I_{\text{FM}} = 785\text{A}$, $t_p = 100\mu\text{sec}$, $dI_p/dt = 25\text{A}/\mu\text{sec}$, $T_C = 25^{\circ}\text{C}$	1.0	μsec
Thermal				
Maximum Resistance, Junction to Case	$R_{\theta(j-c)}$		0.17	$^{\circ}\text{C}/\text{Watt}$
Maximum Resistance, Case to Sink (Lubricated)	$R_{\theta(c-s)}$		0.10	$^{\circ}\text{C}/\text{Watt}$

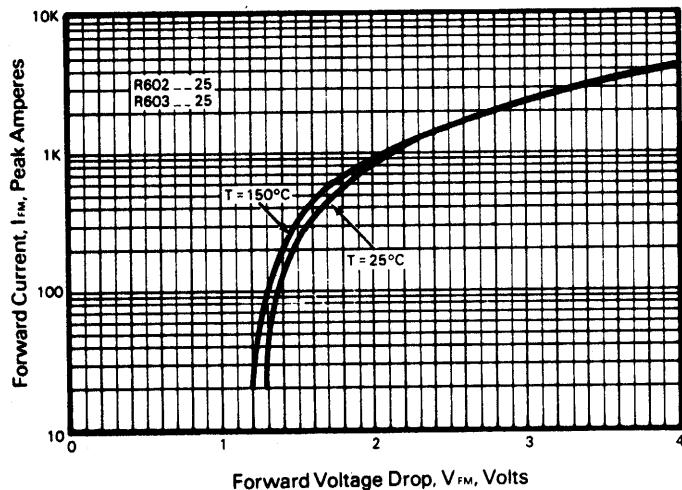

Powerex, Inc., 200 Hillis Street, Youngwood, Pennsylvania 15697-1800 (412) 925-7272
 Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14

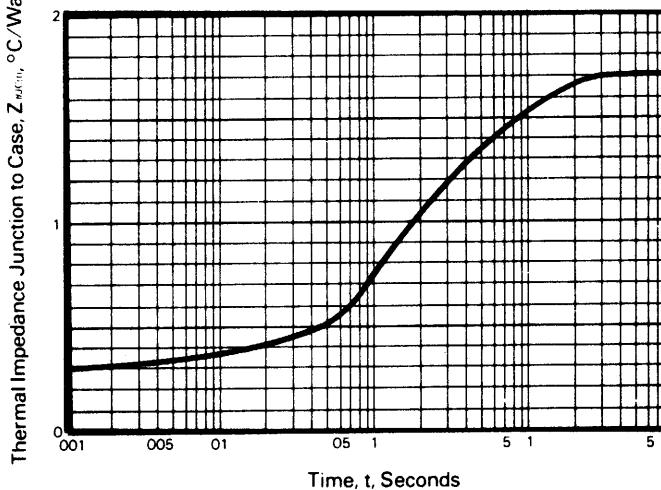
R602 .25/R603 .25
Fast Recovery Rectifier
 250 Amperes Average, 1600 Volts


Reverse Recovery Wave Form

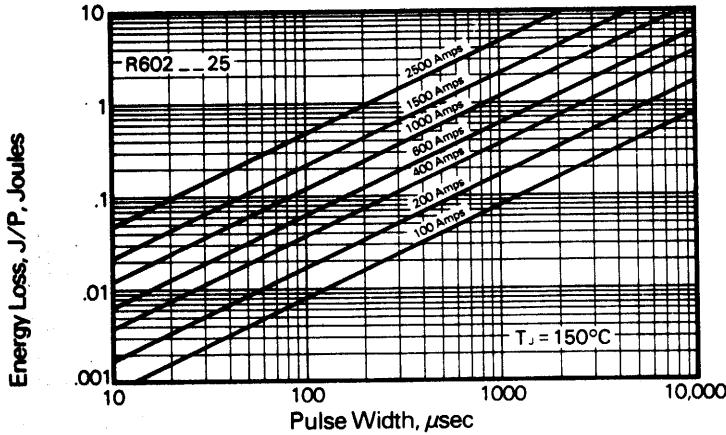

Typical Reverse Recovery Time Vs. Rate of Current Fall

Typical Reverse Recovery Charge Vs. Rate of Current Fall


Typical Ratio of Current Recovery to Rate of Current Fall


Powerex, Inc., 200 Hillis Street, Youngwood, Pennsylvania 15697-1800 (412) 925-7272
 Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14

R602 _ 25/R603 _ 25
Fast Recovery Rectifier
 250 Amperes Average, 1600 Volts


Forward Current Vs. Forward Voltage Drop

Transient Thermal Impedance Vs. Time

Energy Loss Per Pulse for Sinusoidal Pulses

Calculation of Fast Recovery Diodes and Allowable Case Temperature

1. Conduction Losses

$$P_{av(cond)} = J/P \times F$$

2. Reverse Recovery Losses (Approximate)

$$P_{av(sw)} = 1/4 \times V_R \times \frac{di_R}{dt} \times T_{rr}^2 \times \left(\frac{1/s}{1 + 1/s} \right)^2 \times F \times 1 \times 10^{-6}$$

3. Maximum Allowable Case Temperature

$$T_{C(max)} = T_j - (P_{av(cond)} + P_{av(sw)}) \times R_{\theta(j-c)}$$

Where:

$P_{av(cond)}$ = Forward Conduction Power Loss in Watts

$P_{av(sw)}$ = Reverse Recovery Power Loss in Watts

J/P = Energy Loss per Pulse in Joules

F = Frequency in Hertz

V_R = Steady State Reverse Operating Voltage in Volts

$\frac{di_R}{dt}$ = Rate of Decay of Forward Current in Amperes/μsec

T_{rr} = Reverse Recovery Time in Microseconds

$\frac{1}{s}$ = Ratio of Recovery di/dt ($\frac{di_F/dt}{di_R/dt}$)

F = Operating Frequency in Hertz

$T_{C(max)}$ = Maximum Allowable Case Temperature in °C.

T_j = Maximum Operating Junction Temperature in °C.

$R_{\theta(j-c)}$ = DC Junction to Case Thermal Impedance in °C/Watt.