

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Solid State Relays Industrial, 1-Phase ZS, Standard Range Types RA 24.... 06/RA 44.... 08/RA 48.... 12

- AC Solid State Relay
- Zero switching
- Direct copper bonding technology
- Rated operational current: 25, 50 and 90 AACrms
- Blocking voltage: Up to 1200 V_p
- Rated operational voltage: Up to 480 VACrms
- 3 input ranges: 3 to 32 VDC, 10 to 90 VAC/DC and 90 to 280 VAC/DC
- Isolation: OPTO (input-output) 4000 VACrms

Product Description

The zero switching relay with antiparallel thyristor output is the most widely used industrial SSR due to its multiple application possibilities. The relay can be used for resis-

tive, inductive and capacitive loads. The zero switching relay switches ON when the sine curve just crosses zero and switches OFF when the current crosses zero.

Ordering Key Solid State Relay Switching mode Rated operational voltage Rated operational current Control voltage Blocking voltage

Type Selection

Switching mode	Rated operational voltage	Rated operational current	Control voltage	Blocking voltage
A: Zero switching	24: 230 VACrms	25: 25 AACrms	-D: 3 to 32 VDC	06: 650 V _p
	44: 400 VACrms	50: 50 AACrms	LA: 10 to 90 VAC/DC	08: 850 V _p
	48: 480 VACrms	90: 90 AACrms	HA: 90 to 280 VAC/DC	12: 1200 V _p

Selection Guide

Rated opera-	Blocking	Control voltage	Rated operational current					
tional voltage	•		25 AACrms	50 AACrms	90 AACrms			
		3 to 32 VDC	RA 2425 -D 06	RA 2450 -D 06	RA 2490 -D 06			
230 VACrms	650 V _p	10 to 90 VAC/DC	RA 2425 LA 06	RA 2450 LA 06	RA 2490 LA 06			
		90 to 280 VAC/DC	RA 2425 HA 06	RA 2450 HA 06	RA 2490 HA 06			
		3 to 32 VDC	RA 4425 -D 08	RA 4450 -D 08	RA 4490 -D 08			
400 VACrms	850 V _p	10 to 90 VAC/DC	RA 4425 LA 08	RA 4450 LA 08	RA 4490 LA 08			
		90 to 280 VAC/DC	RA 4425 HA 08	RA 4450 HA 08	RA 4490 HA 08			
		3 to 32 VDC	RA 4825 -D 12	RA 4850 -D 12	RA 4890 -D 12			
480 VACrms	1200 V _p	10 to 90 VAC/DC	RA 4825 LA 12	RA 4850 LA 12	RA 4890 LA 12			
		90 to 280 VAC/DC	RA 4825 HA 12	RA 4850 HA 12	RA 4890 HA 12			

General Specifications

	RA 24 06	RA 44 08	RA 48 12
Operational voltage range	24 to 280 VACrms	42 to 480 VACrms	42 to 530 VACrms
Blocking voltage	≥ 650 V _p	≥ 850 V _p	≥ 1200 V _p
Zero voltage turn-on	≤ 20 V	≤ 40 V	≤ 40 V
Operational frequency range	45 to 65 Hz	45 to 65 Hz	45 to 65 Hz
Power factor	≥ 0.5 @ 230 VACrms	≥ 0.5 @ 400 VACrms	≥ 0.5 @ 480 VACrms
Approvals	UL, CSA	UL, CSA	UL, CSA

Input Specifications

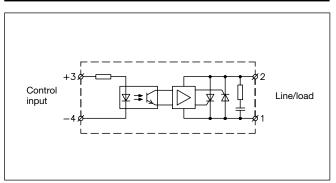
	RAD	RA LA	RA HA
Control voltage range	3 to 32 VDC	10 to 90 VAC/DC	90 to 280 VAC/DC
Pick-up voltage	≤ 3 VDC	≤ 10 VAC/DC	≤ 90 VAC/DC
Drop-out voltage	≥ 1 VDC	≥ 1 VAC/DC	≥ 10 VAC/DC
Reverse voltage	≤ 32 VDC		
Input impedance	1.5 kΩ	5.4 kΩ	44 kΩ
Response time pick-up	≤ 1/2 cycle	≤ 1 cycle	≤ 1 cycle
Control pulse width	≥ 0.5 ms	≥ 0.5 ms	≥ 0.5 ms
Response time drop-out	≤ 1/2 cycle	≤ 1/2 cycle	≤ 1/2 cycle

Output Specifications

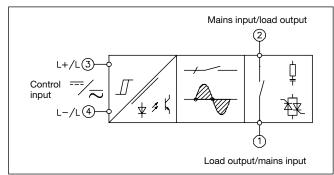
	RA25	RA50	RA90
Rated operational current AC 51 AC 53a	25 Arms 5 Arms	50 Arms 15 Arms	90 Arms 20 Arms
Minimum operational current	150 mArms	250 mArms	400 mArms
Rep. overload current t=1 s	≤ 55 Arms	≤ 125 Arms	≤ 150 Arms
Non-rep. surge current t=10 ms	325 A _p	600 A _p	1150 A _p
Off-state leakage current @ rated voltage and frequency	≤ 3 mArms	≤ 3 mArms	≤ 3 mArms
I2t for fusing t=10 ms	≤ 525 A ² s	≤ 1800 A ² s	≤ 6600 A²s
On-state voltage drop @ rated current	≤ 1.6 Vrms	≤ 1.6 Vrms	≤ 1.6 Vrms
Critical dV/dt commutating	≥ 500 V/µs	≥ 500 V/µs	≥ 500 V/µs
Critical dV/dt off-state	≥ 500 V/µs	≥ 500 V/µs	≥ 500 V/µs

Thermal Specifications

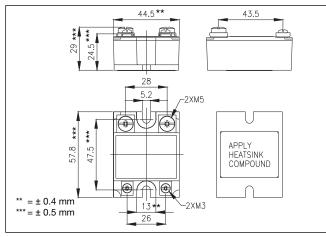
	RA10	RA25	RA50	RA90
Operating temperature	-20 to +70 °C (-4° to +158°F)			
Storage temperature	-40 to +100 °C (-40° to +212°F)			
Junction temperature	≤125 C (≤ 257°F)	≤125 C (≤257°F)	≤125 C (≤257°F)	≤125 C (≤ 257°F)
R _{th} junction to case	≤ 2.0 K/W	≤ 1.25 K/W	≤ 0.65 K/W	≤ 0.3 K/W
R _{th} junction to ambient	≤ 12.5 K/W	≤ 12 K/W	≤ 12 K/W	≤ 12 K/W


Isolation

Rated isolation voltage Input to output	≥ 4000 VACrms
Rated isolation voltage Output to case	≥ 4000 VACrms
Insulation resistance Input to output	≥ 10 ¹⁰ W
Insulation resistance Ouput to case	≥ 10 ¹⁰ W
Insulation capacitance Input to output	≤ 8 pF
Insulation capacitance Output to case	≤ 100 pF


Accessories

Protection cover Heatsinks DIN rail adapter Varistors Fuses For further information refer to "General Accessories".


Wiring Diagram

Functional Diagram

Dimensions

All dimensions in mm

Housing Specifications

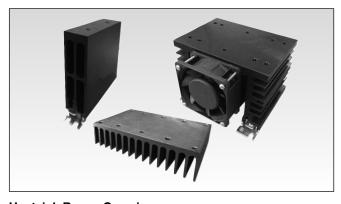
Weight		Approx. 110 g
Housing material		Noryl GFN 1, black
Base plate	25, 50 A 90 A	Aluminium, nickel-plated Copper, nickel-plated
Potting compound	0071	Polyurethane
Relay Mounting screws		M5
Mounting torque Control terminal		≤ 1.5 Nm
Mounting screws Mounting torque		M3 x 6 ≤ 0.5 Nm
Power terminal Mounting screws Mounting torque		M5 x 6 ≤ 2.4 Nm

Heatsink Dimensions (load current versus ambient temperature)

RA ..25

Load currer	Thermal resistance Pownt [A] [K/W] dissi				rer ipation [W]		
25	2	1.7	1.4	1	0.71	0.40	32
22.5	2.5	2.1	1.8	1.4	1	0.66	27
20	3.1	2.7	2.3	1.9	1.4	1	23
17.5	4.	3.5	3	2.5	2	1.4	20
15	4.9	4.3	3.7	3.1	2.5	1.9	16
12.5	6.2	5.4	4.6	3.9	3.1	2.3	13
10	8.1	7.1	6.1	5.1	4	3	10
7.5	11.3	9.9	8.5	7.1	5.6	4.2	7
5	-	15.6	13.3	11.1	8.9	6.7	5
2.5	-	-	-	-	18.7	14	2
	20	30	40	50	60	70 Ambien	T _A t temp. [°C]

RA ..50


Load				I resistance Pow diss			r ation [W]
50	0.92	0.76	0.60	0.45	0.29	-	63
45	1.2	0.99	0.80	0.62	0.44	0.26	55
40	1.5	1.3	1.1	0.85	0.63	0.42	47
35	1.9	1.6	1.4	1.1	0.89	0.63	40
30	2.4	2.1	1.8	1.5	1.2	0.91	33
25	3	2.7	2.3	1.9	1.5	1.1	26
20	3.9	3.5	3	2.5	2	1.5	20
15	5.5	4.8	4.1	3.4	2.7	2.1	15
10	8.6	7.5	6.4	5.4	4.3	3.2	9
5	17.9	15.6	13.4	11.2	8,9	6.7	4
	20	30	40	50	60	70	TA
						Ambient t	emp. [°C]

RA ..90

Load	nt [A]	Thermal resistance Power [K/W] dissipatio					
90	0.63	0.53	0.42	0.32	-	-	97
80	0.81	0.69	0.57	0.45	0.33	-	84
70	1	0.89	0.75	0.61	0.47	0.33	71
60	1.3	1.2	1	0.83	0.66	0.49	59
50	1.7	1.5	1.3	1.1	0.85	0.64	47
40	2.2	1.9	1.7	1.4	1.1	0.83	36
30	3.1	2.7	2.3	1.9	1.5	1.2	26
20	4.8	4.2	3.6	3	2.4	1.8	17
10	10	8.8	7.5	6.3	5	3.8	8
·	20	30	40	50	60	70	T _A
						Ambient t	emp. [°C]

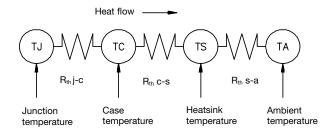
Heatsink Selection

Heatsink Range Overview:

http://www.productselection.net/PDF/UK/ssr_accessories.pdf

Heatsink Selector Tool:

http://www.productselection.net/heatsink/heatsinkselector.php?LANG=UK


Applications

This relay is designed for use in applications in which it is exposed to high surge conditions. Care must be taken to ensure proper heatsinking when the relay is to be used at high sustained currents. Adequate electrical connection between relay terminals and cable must be ensured.

Thermal characteristics

The thermal design of Solid State Relays is very important. It is essential that the user makes sure that cooling is adequate and that the maximum junction temperature of the relay is not exceeded.

If the heatsink is placed in a small closed room, control panel or the like, the power dissipation can cause the ambient temperature to rise. The heatsink is to be calculated on the basis of the ambient temperature and the increase in temperature.

Thermal resistance: R_{th} j-c = junction to case R_{th} c-s = case to heatsink R_{th} s-a = heatsink to ambient

Ordering Key

RHS..

Heatsinks and fans

Direct bonding

strength.

mula:

and the ceramic substrate has

been applied. This is to en-

sure uninhibited heat transfer

and high thermal fatigue

The relay has been designed

for applications requiring lar-

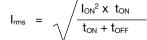
The power dissipation for in-

termittent use is calculated ac-

cording to the following for-

ge numbers of load cycles.

Power dissipation


- 5.40°C/W to 0.12°C/W thermal resistance
- DIN, panel or thru wall mounting
- · Single or multiple SSR mounting

$I_{ON}^2 x t_{ON}$ In the design of the output power semiconductor direct bonding of the copper layer

Ex: RA 24 50 -D 06: Load current = 45 A $t_{ON} = 30 \text{ s}$ $t_{OFF} = 15 s$

45² x 30 30 + 15

The rms current will be 36.7 A.

$$I_{rms} = \sqrt{\frac{45^2 \times 30}{30 + 15}}$$