
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

Using Your

To Have Fun With
GPIO Zero

by Alex Eames

Introduction

Adding 8 Channels of Analog Input

The RasPiO®1 Analog Zero offers a compact, inexpensive, easy way to

add eight analog2 channels to your Raspberry Pi.

This enables simultaneous reading of 8 input Voltages up to 3.3V (or

more with some tricks I'll show you later). This can be used to...

• read sensors

• use potentiometer dials for control or display

• make a weather station

• make a digital thermometer

• make a multi-channel Voltmeter

GPIO Zero

Ben Nuttall and Dave Jones have created GPIO Zero as the ideal way

into Python GPIO programming. Using it with the RasPiO Analog Zero

means there is nothing to install before you can start playing.

Also, by keeping the board inexpensive, I hope it's realistic for

individuals, schools and jams to be able to get hold of some and

discover the joys of measuring and controlling the world with the

RasPiO Analog Zero, Raspberry Pi and GPIO Zero.

All code in this guide and in the analogzero Github repository is in

Python 3.

1 RasPiO is a trademark of Alex Eames. Raspberry Pi is a trademark of the Raspberry Pi
Foundation

2 I use the US spelling for the word analog. In British English it's spelt analogue, but I got in the
habit of using analog when learning Arduino programming. Perhaps it's a silly reason, but
everyone has their quirks.

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 2 of 39

 Analog Zero Instructions

The RasPiO Analog Zero uses the BCM GPIO port numbering scheme.

This is a perfect match for GPIO Zero.

Hardware Technical Overview

This page is mainly for the technically minded. If you just want to get on

with experimenting, you can skip to the next section.

MCP3008

RasPiO Analog Zero uses an MCP3008 analog to digital converter. It's

an SPI driven, 10-bit, 8-channel ADC. The MCP3008 datasheet is here.

Ports Used by the Board

The MCP3008 analog to digital converter chip is connected to the SPI

ports MOSI, MISO, SCLK and CE0. All the Pi's GPIO ports3 are broken

out to through-holes.

Vref is Tweakable

The MCP3008 is powered by the Pi's 3.3V (3V3) rail. This means that

the highest voltage the chip can measure directly is 3.3V.

If you are reading a sensor that outputs a lower voltage, you can tweak

Vref to a lower value in order to set the full-scale range of the 10-bit

(1023 steps) resolution. e.g. a TMP36 temperature sensor outputs 1V at

50°C. If you're going to be measuring temperatures below that,

tweaking Vref to 1.0V would get you 0.1°C resolution. If you used 3V3,

you'd have 0.33°C resolution.

3 Except GPIO26

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 3 of 39

By default Vref is set to 3V3 by placing the

jumper to connect Vref to 3V3 (as in the photo).

To set Vref to your own value (not greater than

3.3V) connect the Vref pin to your chosen

voltage source (it must have common GND

with the Pi).

SPI Usage

The Pi's SPI can handle two devices natively. If you wish to add another

SPI device, ensure its chip-select pin is connected to CE1 or it will

interfere with the MCP3008 chip, which uses CE0.

SMT Pads On Rear

There are two surface mount pads on

the rear of the board.

These give an alternative location for

the bypass capacitors (for VDD and

Vref).

If you prefer to use these you can fit

your own 1µF 1206 capacitors (not

supplied).

If You Want More Than 10-bit Resolution...

The MCP3008 is a 10-bit ADC. 10-bit gives you 210 – 1 = 1023 steps of
resolution (values 0 to 1023).

If you have an application that requires greater resolution, the 12-bit
MCP3208 chip (not supplied) is a pin-compatible drop-in replacement.
It's also supported in GPIO Zero. 12-bit provides 4095 steps of
resolution.

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 4 of 39

Vref pin showing jumper

SMT pads on reverse of board

Know Your RasPiO Analog Zero

The RasPiO Analog Zero has been designed to fit directly4 on any 40-

pin consumer model of Raspberry Pi and make it as easy as possible

for people to get into analog sensing and control using GPIO Zero on

the Pi.

The RasPiO Analog Zero connects an MCP3008 ADC chip to your Pi,
breaks out the GPIO ports and provides a prototyping area with power
and ground rails, where you can add components of your choice.

There is also an 8-way female header for the analog inputs if you
choose to fit it.

4 It can fit on older 26-pin Pis with the use of a 26-pin stacking header. The MCP3008 will still
work, but some of the GPIO breakouts (the bottom 8) will not

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 5 of 39

Anatomy of RasPiO Analog Zero

Analog to Digital Converters

We live in an analog world, but computers can only “speak” digital

information. For a computer to process information, it has to be

converted into 0s and 1s, (On/Off, HIGH/LOW, 0V/3V3 etc).

So we need a mechanism of converting the analog information around

us into digital form so that we can do something with it. To do this, we

use a device called an analog to digital converter (also known as ADC

or AD).

Your eyes, with their vast numbers of rods and cones are an incredible

example of an analog to digital converter. Even the most modern

camera sensor with all its millions of pixels cannot simultaneously

determine as many colours, shades and intensities as your eyes.

Analog information is continuous, whereas digital information comes in

steps. If you have enough steps, you can get a usefully high degree of

measurement precision. The MCP3008 is a 10-bit ADC. This means that

it has 210 - 1 = 1023 steps. This is referred to as “resolution”. In

practice, the ADC output values are 0 to 1023. (In GPIO Zero, this is

converted into a float variable where 0 is 0 and 1023 = 1.0)

ADCs are used to measure the voltage of a signal. Most sensors are

designed to output a voltage proportional to the property they are

measuring. So this gives us an elegant way of getting information from

the analog world into the Raspberry Pi.

The MCP3008 ADC is powered via 3V3 from the Raspberry Pi. This is

also its default reference voltage5 Vref. So if the measured analog input

signal is 3.3V, the ADC will output 1023. If the input signal is 0V, the

ADC output will be 0.

5 See Vref is Tweakable to find out how to adjust the reference voltage

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 6 of 39

If we divide 3.3V by 1023, we get the resolution of the device. 3.3V /

1023 = 0.00322 V/step. That's 3 mV.

If we want to read an analog sensor's voltage we do the following

calculation...

ADC reading / 1023 * 3.3 V = Sensor Voltage

From the sensor voltage, we can usually calculate temperature,

pressure or whatever our sensor is measuring.

But we can just measure and report the voltage(s) as well.

GPIO Zero Converts ADC Output For Us

When using GPIO Zero, the ADC output (0 to 1023) is converted into a

float variable where 0 = 0 and 1023 = 1.0

This can simplify our calculations, as we'll see a little later on in the

code section.

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 7 of 39

Soldering Instructions

If you prefer an assembly video, you can find one here, with lots of

background information. It's 17 minutes, but covers every single joint...

https://youtu.be/HjzZm9Rgaks

It's usually best to start with "low" components and get progressively

higher. Suggested assembly order is...

1. chip socket

2. capacitors (doesn't matter which way round they are)

3. 2-way male header

4. 8-way female header

5. 40-way GPIO header

6. gently roll the legs of the chip on a flat surface to push them

inwards slightly, then press into the chip socket with the dimple at

the top end (next to capacitors)

7. fit the jumper connecting Vref to 3V3

Now it should look something like this...

If you want to use the Pi's hardware SPI capability, you can ensure that

SPI is enabled in the same way as enabling i2c here. GPIO Zero will fall

back to 'bit-banging' if SPI is not enabled, but should still work.

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 8 of 39

Basic Usage of GPIO Zero with MCP3008

To read and display the value of a single analog channel...

from gpiozero import MCP3008

adc = MCP3008(channel=0, device=0)

print(adc.value)

channel=0 specifies that we want to read channel 0 (A0).

device=0 specifies SPI device 0.

The default is 0, which is correct for the RasPiO Analog Zero, so it may

be omitted.

adc.value returns a float variable from 0.0 to 1.0. The output will look

something like this...

This is a scaled representation of the 0 to 1023 that the MCP3008

returns via SPI (in this case 0.69208 represents 708).

To read and display the voltage of a single analog channel...

from gpiozero import MCP3008

adc = MCP3008(channel=0)

voltage = 3.3 * adc.value

print("channel 0 voltage is: ", voltage)

The only thing we're doing differently here is multiplying the

adc.value by 3.3 to calculate the value of the voltage at A0 (ADC

channel 0). voltage will be a float variable from 0.0 to 3.3. The script

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 9 of 39

Read & display a single channel

output will look something like this...

As you can see, this is just the raw output.

Continually read/display voltage of all 8 analog channels...

from gpiozero import MCP3008

from time import sleep

voltage = [0,0,0,0,0,0,0,0]

vref = 3.3

while True:

 for x in range(0, 8):

 with MCP3008(channel=x) as reading:

 voltage[x] = reading.value * vref

 print(x,": ", voltage[x])

 sleep(0.1)

This was a quick overview of the basics to get you up and running.

We'll make the raw output look more presentable a bit later on. Now

let's look at some specific experiments and circuits...

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 10 of 39

Output from the above script

Using the MCP3008 with GPIO Zero

LDR Circuit

If we tried to read the channels on the MCP3008 now, without

connecting anything to them, the reading values would likely be

jumping all over the place due to random RF and electrostatic

influences.

Let's do something a bit more controlled than that. Let's use the Light

Dependent Resistor (LDR) and 10 kΩ resistor from the kit...

The circuit will look like this...

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 11 of 39

10 kΩ resistor (top), LDR (bottom)

10 kΩ resistor and LDR circuit

In the circuit, the LDR is connected to A7 and 3V3. The 10 kΩ resistor

is connected to A7 and GND.

A wire connects A6 to GND and another wire connects A5 to 3V3.

So the values of A5 and A6 should stay constant and the value of A7

will vary with light level. Let's write a script to read the values and

show them on the screen...

LDR Code

The following code ldr.py reads all eight channels (0 to 7) of the

MCP3008 and displays their value on the screen, repeatedly, forever...

#!/usr/bin/python3

from gpiozero import MCP3008

from time import sleep

while True:

 for x in range(0, 8):

 with MCP3008(channel=x) as reading:

 print(x,": ", reading.value)

 sleep(0.1)

GPIO Zero outputs an MCP3008 reading as a float variable between 0.0

and 1.0, where 0.0 is 0V and 1.0 = 3.3V (unless you change Vref - it's

3.3V by default).

Your output should look something like this...

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 12 of 39

Simple LDR script output

This script will keep reading the MCP3008 until you hit <CTRL> + C

The output from channels 0-4 is a bit random. It's floating about.

5 should stay fixed firmly at 1.0 as it's connected to 3V3 (3.3V).

6 should stay fixed firmly at 0.0 as it's connected to GND (0V).

7 should vary with changing light conditions. You can verify this with a

torch to increase light and a pen lid to decrease it.

In total darkness, channel 7 should read very close to 0. In bright light it

will be very close to 1.0.

If you change the range, you can ignore the channels we're not

interested in...

for x in range(0, 8):

...becomes...

for x in range(5, 8):

Then our program only reads and displays 5, 6 and 7 - the channels

we're interested in...

Measuring Actual Voltages?

We can tweak our script by adding three lines and changing one to

show the measured voltage instead of a float between 0.0 and 1.0.

Our code (with changes highlighted) becomes...

#!/usr/bin/python3

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 13 of 39

Modified LDR script output

from gpiozero import MCP3008

from time import sleep

voltage = [0,0,0,0,0,0,0,0]

vref = 3.3

while True:

 for x in range(5, 8):

 with MCP3008(channel=x) as reading:

 voltage[x] = reading.value * vref

 print(x,": ", voltage[x], "V")

 sleep(0.1)

And the output now looks like this...

But that long value on channel 7 looks a bit silly. There's no way we can

claim an accuracy or resolution of that many decimal places. With a 10-

bit (1023 steps) ADC we have 0.003V of resolution (at Vref = 3.3V), so we

should only quote an absolute maximum of 3 decimal places, but 2 will

be less “flickery” and more “trustworthy”.

Format Output to 2 Decimal Places

To format the output we can use string formatting...

print(x,": ", voltage[x], "V")

...becomes...

print(x,": ", '{:.2f}'.format(voltage[x]), "V")

The .2f makes the output two decimal places. Your output should now

look nice and neat, like this...

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 14 of 39

LDR tweak 2 output

And this is what the final script should now look like...

#!/usr/bin/python3

from gpiozero import MCP3008

from time import sleep

voltage = [0,0,0,0,0,0,0,0]

vref = 3.3

while True:

 for x in range(5, 8):

 with MCP3008(channel=x) as reading:

 voltage[x] = reading.value * vref

 print(x,": ", '{:.2f}'.format(voltage[x]), "V")

 sleep(0.1)

Using ADC Output to Make a Decision

So we've learned how to display ADC output on the screen and how to

convert the reading into a voltage and format it. Now let's use the

measured LDR value to make a decision. We'll add an LED and 330 Ω

resistor to our circuit and switch the LED on when the LDR shows less

than half brightness.

Connect LED positive end (long leg) to GPIO12.

LED negative end (flat side) to a 330 Ω resistor.

Connect the other end of the 330 Ω resisor to GND.

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 15 of 39

LDR tweak 3 output

And now we just write a few simple lines of code ldr-led.py. The yellow

highlights show the parts we use to control the LED.

#!/usr/bin/python3

from gpiozero import MCP3008, LED

from time import sleep

red = LED(12)

ldr = MCP3008(channel=7)

while True:

 print("LDR: ", ldr.value)

 if ldr.value < 0.5:

 red.on()

 print ("LED on")

 else:

 red.off()

 print ("LED off")

 sleep(0.1)

We only read one channel (7) this time, so the code is a bit simpler.

We create ldr = MCP3008(channel=7) on channel 7 and read it with

ldr.value Then, if ldr.value is lower than 0.5, we switch on the LED,

otherwise we switch it off.

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 16 of 39

Decision-making circuit

The on-screen output looks something like this. I caught the moment of

covering the LDR, and when the LED switched on...

You now know how to read one or more analog channels of the

MCP3008 and manipulate, display and format the results or use them to

make a decision.

Next we're going to look at a couple of RasPiO Analog Zero projects

involving i2c character LCDs...

• Weather Station/Digital Thermometer

• Voltmeter

But before we can do that properly, we'll need to install some simple

scripts and make sure our Pi is set up to use an i2c character LCD.

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 17 of 39

Switching an LED using LDR reading

Setting Up for Weather Station & Voltmeter

Ensure i2c is Enabled

Menu > Preferences > Raspberry Pi Configuration

Click the Interfaces tab and ensure i2c is enabled

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 18 of 39

Then click OK. If it asks you to reboot, do that now.

Install Python i2c Drivers

These projects use i2c LCDs so we need to be able to run these from

Python.

Open a terminal window...

 and type...

sudo apt-get update

then

sudo apt-get install -y python-smbus i2c-tools python3-

smbus

Once this has installed, type...

i2cdetect -y 1 (for original rev 1 model B Pi, change 1 to 0)

This tool allows us to check the i2c address of any i2c devices we have

connected to the Pi. For example, our character LCDs are usually on

0x27 (or 0x3f). So, if connected, the output would look like this...

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 19 of 39

No i2c devices attached

If i2cdetect -y 1 shows a number other than 27, we'll need to edit

one of our LCD driver files (lcddriver.py) to change the address. But we

haven't installed them yet. It's only a couple of files. We'll get them from

github with the following command...

cd

git clone https://github.com/raspitv/analogzero.git

This will create a directory called analogzero and place all the required

files in it. To go there...

cd analogzero

ls

The python drivers for the i2c LCDs

are...

i2c_lib.py

lcddriver.py

These files must be in the same directory as the scripts which use

them. If your LCD's i2c address is not 27, you'll need to edit

lcddriver.py to change line 7 ADDRESS = 0x27 to show the correct

i2c address (e.g. 0x3f). If your LCD is 0x3f, it should be labelled.

Now let's have a play with the LCD and make it display something...

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 20 of 39

i2c device at 0x27

In the analogzero directory there are two LCD demo scripts (one for

each screen size)...

lcd_demo16x2.py

lcd_demo20x4.py

Choose the right one for your LCD, and run it with...

python3 lcd_demo16x2.py

This should demonstrate the capabilities of the display and give you a

nice clock (only accurate if connected to internet).

Let's go through some of the key parts of the code to highlight the LCD

controls...
import lcddriver

imports the driver files.

LCD custom character variables

degree = chr(0)

squared = chr(1)

cust_chars = [[0x1c,0x14,0x1c,0x0,0x0,0x0,0x0,0x0], # degree

 [0x8,0x14,0x8,0x10,0x1c,0x0,0x0,0x0]] # squared

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 21 of 39

Demo script showing 20x4 LCD clock

Allows us to create and use our own custom characters. In this case

I've made characters for ° and 2. If you want to create your own custom

characters (you can have up to 8), there is a useful web page here to

help generate the hex codes.

lcd = lcddriver.lcd()

lcd.lcd_load_custom_chars(cust_chars)

lcd.lcd_clear()

...creates and object lcd to control the LCD with. Then we load the

custom characters and clear the LCD.

display an intro message

lcd.lcd_display_string('{:^16}'.format("RasPiO Analog Zero"), 1)

lcd.lcd_display_string('{:^16}'.format("16x2 Weather Kit"), 2)

...displays 2 lines of text center justified '{:^16}'.format() to 16

character length.

def update():

 lcd.lcd_display_string('{:^16}'.format(row_one), 1)

 lcd.lcd_display_string('{:^16}'.format(row_two), 2)

...defines a function to write the value of row_one and row_two to their

respective rows. So all we have to do to write to the LCD is change the

value of these variables and call update()

activate every single pixel to test the display

pixel_test = chr(255) * 16

for x in range(1,3):

 lcd.lcd_display_string(pixel_test, x)

sleep(1)

Character 255 is a solid bar with every pixel illuminated. You can use

the above technique to display any of the built-in characters, but you

can also use normal Latin-based keyboard characters (ASCII) as well.

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 22 of 39

You can find the character table for the LCDs here. (ROM code A00)

lcd.lcd_display_string('{:<16}'.format("align left"), 1)

lcd.lcd_display_string('{:>16}'.format("align right"), 2)

lcd.lcd_display_string('{:^16}'.format("center"), x)

These lines show you how to align text using < left, > right, ^ center

lcd.backlight(0) # swap 0 for 1 turns backlight on

Switches off the lcd backlight.

Now we've learnt a bit about the LCD, let's see how to build a weather

station/thermometer.

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 23 of 39

Weather Station / Thermometer Project

This project is designed around the optional RasPiO 16x2 and 20x4

weather station kits.

Each kit contains...

• an i2c LCD

• two TMP36 temperature sensors

• two LDRs

• 20 jumper wires

• some resistors

The weather station and thermometer circuits and code are essentially

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 24 of 39

RasPiO 16x2 weather/thermometer/voltmeter kit

RasPiO 20x4 weather/thermometer/voltmeter kit

the same, so we'll treat those together. Wire up the following circuit...

Each LDR has one end in 3V3 and one end in A6 or A7.

A 10kΩ resistor connects A6 and A7 to GND. Be careful not to short

3V3 to GND with the LDR and resistor wires.

The TMP36 temperature sensors have their middle pins connected to

A0 and A1. Their other pins are connected to 3V3 and GND.

The i2c LCDs (same for both) connect to SDA, SCL, 5V and GND.

So we have temperature sensors on channels 0 and 1 and light sensors

on channels 6 and 7.

Using RasPiO Analog Zero with GPIO Zero v0.32 © Alex Eames 2016 25 of 39

Weather Station/Thermometer circuit

	Contact us
	Adding 8 Channels of Analog Input
	GPIO Zero

	Hardware Technical Overview
	MCP3008
	Ports Used by the Board
	Vref is Tweakable
	SPI Usage
	SMT Pads On Rear
	If You Want More Than 10-bit Resolution...

	Know Your RasPiO Analog Zero
	Analog to Digital Converters
	We live in an analog world, but computers can only “speak” digital information. For a computer to process information, it has to be converted into 0s and 1s, (On/Off, HIGH/LOW, 0V/3V3 etc).
	So we need a mechanism of converting the analog information around us into digital form so that we can do something with it. To do this, we use a device called an analog to digital converter (also known as ADC or AD).
	Your eyes, with their vast numbers of rods and cones are an incredible example of an analog to digital converter. Even the most modern camera sensor with all its millions of pixels cannot simultaneously determine as many colours, shades and intensities as your eyes.
	Analog information is continuous, whereas digital information comes in steps. If you have enough steps, you can get a usefully high degree of measurement precision. The MCP3008 is a 10-bit ADC. This means that it has 210 - 1 = 1023 steps. This is referred to as “resolution”. In practice, the ADC output values are 0 to 1023. (In GPIO Zero, this is converted into a float variable where 0 is 0 and 1023 = 1.0)
	ADCs are used to measure the voltage of a signal. Most sensors are designed to output a voltage proportional to the property they are measuring. So this gives us an elegant way of getting information from the analog world into the Raspberry Pi.
	The MCP3008 ADC is powered via 3V3 from the Raspberry Pi. This is also its default reference voltage Vref. So if the measured analog input signal is 3.3V, the ADC will output 1023. If the input signal is 0V, the ADC output will be 0.
	If we divide 3.3V by 1023, we get the resolution of the device. 3.3V / 1023 = 0.00322 V/step. That's 3 mV.
	If we want to read an analog sensor's voltage we do the following calculation...
	ADC reading / 1023 * 3.3 V = Sensor Voltage
	From the sensor voltage, we can usually calculate temperature, pressure or whatever our sensor is measuring.
	But we can just measure and report the voltage(s) as well.
	GPIO Zero Converts ADC Output For Us

	Soldering Instructions
	Basic Usage of GPIO Zero with MCP3008
	To read and display the value of a single analog channel...
	To read and display the voltage of a single analog channel...

	print("channel 0 voltage is: ", voltage)
	The only thing we're doing differently here is multiplying the adc.value by 3.3 to calculate the value of the voltage at A0 (ADC channel 0). voltage will be a float variable from 0.0 to 3.3. The script output will look something like this...
	As you can see, this is just the raw output.
	Continually read/display voltage of all 8 analog channels...

	Using the MCP3008 with GPIO Zero
	LDR Circuit
	LDR Code
	Measuring Actual Voltages?
	Format Output to 2 Decimal Places

	Using ADC Output to Make a Decision

	Setting Up for Weather Station & Voltmeter
	Ensure i2c is Enabled
	

	Weather Station / Thermometer Project

