: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Title	Reference Design Report for a 5 W Dimmable Power Factor Corrected LED Driver (Non- Isolated) Using LinkSwitch
Specification LNK457DG	

12 \mathrm{~V}-18 \mathrm{~V}, 350 \mathrm{~mA} \pm 8 \% Output\end{array}\right|\)\begin{tabular}{ll}

Application \& | LED Driver for A19 Incandescent Lamp |
| :--- |
| Replacement |

\hline Author \& Applications Engineering Department

\hline | Document |
| :--- |
| Number | \& RDR-251

\hline Date \& February 15, 2011

\hline Revision \& 1.92

\hline
\end{tabular}

Summary and Features

- Single stage power factor correction and accurate constant current (CC) output
- Low cost, low component count and small PCB footprint solution
- Superior performance and end user experience
- >100:1 dimming range even with low cost leading edge TRIAC dimmers
- Clean monotonic start-up - no output blinking
- Fast start-up ($<300 \mathrm{~ms}$) - no perceptible delay
- Consistent dimming performance unit to unit
- Highly energy efficient
- $>73 \%$ at 115 VAC / 230 VAC (dimmable configuration)
- $>78 \%$ at 115 VAC / 230 VAC (non-dimmable configuration)
- Integrated protection and reliability features
- Output open-circuit protected / output short-circuit protected with auto-recovery
- Auto-recovering thermal shutdown with large hysteresis protects both components and printed circuit board
- No damage during brown out conditions
- Extended pin creepage distance between device DRAIN pin and other pins for reliable operation in high pollution and humid environments
- Meets IEC ringwave and EN55015 conducted EMI
- PF >0.9 at 115 VAC / 230 VAC
- $\%$ ATHD $<10 \%$ at 115 VAC and $<15 \%$ at 230 VAC
- Meets EN61000-3-2 harmonics contents

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
Table of Contents
1 Introduction 5
2 Power Supply Specification 7
3 Schematic 8
4 Circuit Description 9
4.1 Dimming Performance Circuit Design Considerations 9
4.2 Input EMI Filtering and Input Rectification 10
4.3 Active Damper 10
4.4 Bleeder 10
4.5 LinkSwitch-PL Primary. 11
4.6 Output Rectification 11
4.7 Output Feedback 11
5 PCB Layout 12
6 Bill of Materials 13
7 Transformer Design Spreadsheet 14
8 Transformer Specification 17
8.1 Electrical Diagram 17
8.2 Electrical Specifications 17
8.3 Materials 17
8.4 Transformer Build Diagram 18
8.5 Transformer Construction 19
8.6 Winding Illustrations 20
9 Performance Data 23
9.1 Active Mode Efficiency 23
9.2 Non-Dimmable Configuration 24
9.3 Dimmable 24
9.4 Harmonics 25
9.5 Power Factor 27
9.6 Line Regulation 28
9.7 Dimming Performance 29
9.7.1 Dimming Range 29
9.7.2 Unit to Unit Tracking 33
10 Thermal Performance 35
10.1 Thermal Set-up 35
10.2 Equipment Used 36
10.3 Thermal Result 36
10.4 Thermal Scan 37
11 Waveforms 38
11.1 Drain Voltage and Current 38
11.1.1 Normal Steady State Operation 38
11.1.2 AC Start-up 40
11.1.3 115 V TRIAC in Series with AC Input 40
11.1.4 230 V TRIAC in Series with AC Input 42
11.1.5 Fault Conditions (Output Shorted / Open Circuit) 43
11.2 Output Current Start-up Profile 44
11.3 Input and Output Waveforms 45
11.3.1 Normal Operation ($\mathrm{V}_{\mathrm{IN}_{\mathrm{N}}}, \mathrm{I}_{\mathrm{N}}, \mathrm{V}_{\mathrm{O}}$ and I_{O}) 45
11.4 Dimming Operation ($\mathrm{V}_{\mathrm{IN}_{\mathrm{N}}}, \mathrm{I}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}}$ and I_{O}) 46
11.5 Line Transient Response 48
12 Line Surge 52
13 Conducted EMI 53
13.1 Equipment: 53
13.2 EMI Test Set-up 53
14 Dimming Compatibility 56
15 Output Current Production Distribution 57
16 Revision History 59

Important Note:

This board is designed for non-isolated application and the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This document is an engineering report describing a non-isolated LED driver (power supply) utilizing a LNK457DG from the LinkSwitch-PL family of devices.

The RD-251 provides a single constant current output of 350 mA over an LED string voltage of 12 V and 18 V . The output current can be reduced using a standard $A C$ mains TRIAC dimmer down to 1% (3 mA) without instability and flickering of the LED load. The board is compatible with both low cost leading edge and more sophisticated trailing edge dimmers.

The board was optimized to operate over the universal AC input voltage range (85 VAC to $265 \mathrm{VAC}, 47 \mathrm{~Hz}$ to 63 Hz) but suffers no damage over an input range of 0 VAC to 300 VAC. This increases field reliability and lifetime during line sags and swells. LinkSwitchPL based designs provide a high power factor (>0.9) meeting current international requirements and enabling a single design to be used worldwide.

The form factor of the board was chosen to meet the requirements for standard pear shaped (A19) LED replacement lamps. The output is non-isolated and requires the mechanical design of the enclosure to isolate the output of the supply and the LED load from the user.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

Figure 1 - Populated Circuit Board Photograph (Top).

Figure 2 - Populated Circuit Board Photograph (Bottom).

Figure 3 - Example of RD-251 Used in an A19 LED Replacement Lamp (board removed from housing).

2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

3 Schematic

Note:
C1, R22 and C12 are not populated.
For non-dimming application, the Active Damper and Bleeder blocks can be removed allowing the following parts can be deleted: Q3, R20, R3, R4, R10, R11 C6 and C3. Replace 0Ω for the following locations: R7, R8, and R20.

For high line only application and to match high leakage dimmer such as REV 300 W, Busch 2250 (600 W) or alike the following parts can be tuned. Replace F1 to $47 \Omega / 2 W$ fusible resistors, $R 7$ and $R 8$ to 20S, C6 to $220 \mathrm{nF}, R 10$ and $R 11$ to $510 \Omega / 0.5 \mathrm{~W}$ minimum, C3 to 150 nF and $R 16$ to $1 \mathrm{k} \Omega / 0.25 \mathrm{~W}$.

Figure 4 - Schematic (highlighted blocks may be removed for non-dimming applications.)

4 Circuit Description

This circuit is configured as non-isolated discontinuous flyback converter designed to drive LED strings at voltages of 12 V to 18 V with an output current of 350 mA . The driver is guaranteed to operate across a wide range input voltage range and provide high power factor. The circuit meets both line surge and EMI requirements and the low component count allows board dimensions required for LED bulb replacement applications.

4.1 Dimming Performance Circuit Design Considerations

The requirement to provide output dimming with low cost, TRIAC base, leading edge phase dimmers introduces a number of trade offs in the design.

Due to the much lower power consumed by LED based lighting the line current drawn by the overall lamp is typically below the holding current of the TRIAC within the dimmer. This causes undesirable behaviors such as limited dim range and/or flickering. The relatively large impedance the LED driver presents to the line allows significant ringing to occur when the TRIAC turns on. At the instant the TRIAC conducts, a large inrush current flows into the input capacitance of the driver, exciting the line inductance and causing current ringing. This too can cause similar undesirable behavior as the ringing may cause the TRIAC current to fall to zero and turn off, also generating flicker.

To overcome these issues the circuit includes two circuit blocks labeled active damper and bleeder. The drawback of these blocks is increased dissipation and therefore reduced efficiency of the supply.

The values used for the damper and bleeder in this design allow correct operation of a single board with the widest range of $\leq 600 \mathrm{~W}$ dimmer models including low cost leading edge TRIAC models across the full input voltage range. The trade off decision was to give flicker free operation for a single lamp connected to a dimmer operating at high line.

A single lamp operating at high line results in the lowest current drawn from the line and the highest inrush current (when the TRIAC fires) and represents the worst case. As a result the active damper and bleeder networks were designed to be aggressive; lower impedance for the bleeder and higher impedance for the damper. This increases dissipation and therefore lowers efficiency of the driver and efficacy of the overall system.

Requiring multiple lamps to be connected to a single dimmer for correct operation reduces the current required through the bleeder, allowing increasing the values of R10 and R11 and reducing the value of C6.

Limiting operation to low line only (85 VAC to 132 VAC) allows the values of R7 and R8 to be reduced as the peak currents that occur when a leading edge dimmer TRIAC fires are significantly lower.

Both changes reduce dissipation and improve efficiency.

For non-dimming application these components can simply be omitted and jumpers used to replace R7 and R8 giving higher efficiency with no change in other performance characteristics.

4.2 Input EMI Filtering and Input Rectification

The EMI filter was optimized to minimize the impact on dimming performance. Resistor R20 is a fusible resistor. Fusible types are selected to fail open-circuit should a component failure cause excessive input current. Film types (vs. wirewound) are acceptable compared to a non or passive PFC solution. This reduces the instantaneous dissipation as the input capacitance charges, however, a 2 w rating is recommended for designed that operate at high line. In addition they limit the inrush current caused when a phase leading TRIAC dimmer turns on and capacitors C4 and C5 charge. The worst case condition (maximum inrush current) occurs when the TRIAC turns on at 90 or 270 degrees, which correspond to the peaks of the AC waveform. Finally they act to damp any current ringing between the AC line impedance and the input stage of the supply again caused by the inrush current when leading edge TRIAC dimmers turn on.

Two differential pi (п) filter EMI stages are used with C1, R2, L1 and C2 forming one stage and C4, L2, R9 and C5 the second. It was found during testing that C1 was not required to meet conducted EMI limits and was therefore not populated.

The incoming AC is rectified by BR1 and filtered by C4 and C5. The total effective input capacitance, the sum of C4, C5 and C6, was selected to assure correct zero crossing detection of the AC input by the LinkSwitch-PL device, necessary correct operation and best performance during dimming.

4.3 Active Damper

The active damper network is used to limit the inrush current, associated voltage spikes and ringing when the TRIAC within a dimmer turns on. This connects a resistance (R7 and R8) in series with the input rectifier for a short period of each AC half-cycle, it is then bypassed for the remainder of the AC cycle by a parallel SCR (Q3). Resistor R3, R4 and C3 determines the delay before the turn-on of Q3.

4.4 Bleeder

Resistor R10, R11 and C6 form a bleeder network which ensures the initial input current is high enough meet the TRIAC holding current requirement, especially during small TRIAC conduction angles.

For non-dimming application, both the active damper and bleeder network may be removed. To achieve this, the following parts can be deleted: Q3, R20, R3, R4, R10, R11, C6 and C3. Replace 0Ω for the following locations: R7, R8, and R20.

4.5 LinkSwitch-PL Primary

The LNK457DG device (U1) incorporates the power switching device, oscillator, output constant current control, start-up, and protection functions. The integrated 725 V MOSFET provides extended voltage margin and ensures high reliability even during line surge events. The device is powered from the BYPASS pin via the decoupling capacitor C9. At start-up, C9 is charged by U1 from an internal current source via the DRAIN pin and then during normal operation it is supplied by the output via R15 and D4.

The rectified and filtered input voltage is applied to one end of the primary winding of T1. The other side of the transformer's primary winding is driven by the integrated MOSFET in U1. The leakage inductance drain voltage spike is limited by an RCD-R clamp consisting of D2, R13, R12, and C7.

Diode D6 is used to protect the IC from negative ringing (drain voltage ringing below source voltage) when the MOSFET is off due to the reflected output voltage exceeding the DC bus voltage, the result of minimal input capacitance to give high power factor.

4.6 Output Rectification

The secondary of the transformer is rectified by D5 and filtered by C11. A Schottky barrier type was selected for higher efficiency. As C11 provides energy storage during AC zero crossings its value determines the magnitude of the line frequency output ripple ($2 \times f_{L}$ due to full wave rectification). The value may therefore be adjusted based on the desired output ripple. For the $680 \mu \mathrm{~F}$ value shown the output ripple is $\pm 50 \%$ of l_{O}. Resistor R17 and C10 damp high frequency ringing and improve conducted and radiated EMI.

4.7 Output Feedback

The CC mode set-point is determined by the voltage drop that appears across R18 which is then fed to the FB pin of U1. Output overvoltage protection is provided by VR2 and R14 (the effect of R14 on the current sense signal in negligible and can be ignored).

5 PCB Layout

Figure 5 - Top Printed Circuit Layout $0.83^{\prime \prime}(20.86 \mathrm{~mm}) \times 2.52^{\prime \prime}(63.9 \mathrm{~mm})$.

Figure 6 - Bottom Printed Circuit Layout.

6 Bill of Materials

Item	Qty	Ref Des	Description	Manufacturer P/N	Manufacturer
1	1	BR1	Bridge Rectifier Diode MBS GPP 0.8A 1000V	B10S-G	Comchip Technology
		$\begin{aligned} & \text { BR1 } \\ & \text { (sub) } \end{aligned}$	600 V, 0.5 A, Bridge Rectifier, SMD, MBS-1, 4-SOIC	MB6S-TP	Micro Commercial
2	1	C3	$22 \mathrm{nF}, 50 \mathrm{~V}$, Ceramic, Y5V, 0603	ECJ-1VF1H223Z	Panasonic
3	1	C4	$22 \mathrm{nF}, 630 \mathrm{~V}$, Film	ECQ-E6223KZ	Panasonic
4	1	C5 C6	$68 \mathrm{nF}, 400 \mathrm{~V}$, Film	ECQ-E4683KF	Panasonic
5	1	C7	1000 pF, 630 V, Ceramic, X7R, 1206	ECJ-3FB2J102K	Panasonic
6	1	C8	$10 \mathrm{nF}, 50 \mathrm{~V}, \mathrm{Ceramic}, \mathrm{X7R}, 0805$	ECJ-2VB1H103K	Panasonic
7	1	C9	$1 \mu \mathrm{~F}, 25 \mathrm{~V}$, Ceramic, X7R, 0805	ECJ-2FB1E105K	Panasonic
8	1	C10	$1 \mathrm{nF}, 100 \mathrm{~V}, \mathrm{Ceramic}, \mathrm{X7R}$, 0805	ECJ-2VB2A102K	Panasonic
9	1	C11	$\begin{aligned} & \hline 680 \mu \mathrm{~F}, 25 \mathrm{~V} \text {, Electrolytic, Very Low ESR, } \\ & 32 \mathrm{~m} \Omega,(10 \times 16) \\ & \hline \end{aligned}$	25ZLH680MEFC10X16	Rubycon
10	0	C1	Do not mount (unstalled/optional location only)		
11	0	C12	Do not mount (unstalled/optional location only)		
12	1	D4	$100 \mathrm{~V}, 0.2 \mathrm{~A}$, Fast Switching, 50 ns, SOD-323	BAV19WS-7-F	Diode Inc.
13	1	D2	DIODE ULTRA FAST, SW 600V, 1A, SMA	US1J-13-F	Diodes, Inc
14	1	D5	$100 \mathrm{~V}, 1 \mathrm{~A}, \mathrm{Schottky}, \mathrm{DO-214AC} \mathrm{(SMA)}$	SS110-TP	Micro commercial
15	1	D6	800 V, 1 A, Rectifier, Glass Passivated, DO- 213AA (MELF)	DL4006-13-F	Diodes Inc
		$\begin{gathered} \hline \text { D6 } \\ \text { (sub) } \end{gathered}$	200 V, 1 A, Fast Recovery, 150ns, SMA	RS1D-13-F	Diodes Inc
16	1	F1	3.15 A, 250V, Slow, RST	507-1181	Belfuse
17	2	L1 L2	$2.2 \mathrm{mH}, 0.15 \mathrm{~A}$, Ferrite Core	CTSCH875DF - 222K	CTParts
18	1	Q3	SCR, $400 \mathrm{~V}, 0.8 \mathrm{~A}, \mathrm{SMD}, \mathrm{SOT}-223$	P0102DN 5AA4	ST Microelectroics
19	2	R2 R9	$4.7 \mathrm{k} \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8GEYJ472V	Panasonic
20	2	R3 R4	$750 \mathrm{k} \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8GEYJ754V	Panasonic
21	2	R7 R8	$240 \Omega, 5 \%, 1 / 4$ W, Thick Film, 1206	ERJ-8GEYJ241V	Panasonic
22	2	$\begin{aligned} & \hline \text { R10 } \\ & \text { R11 } \end{aligned}$	$510 \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8GEYJ511V	Panasonic
23	1	R12	$100 \mathrm{k} \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8GEYJ104V	Panasonic
24	1	R13	$4.7 \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ4R7V	Panasonic
25	1	$\begin{aligned} & \hline \text { R14 } \\ & \text { R21 } \end{aligned}$	$1 \mathrm{k} \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8GEYJ102V	Panasonic
26	1	R15	$3.3 \mathrm{k} \Omega, 5 \%, 1 / 10 \mathrm{~W}$, Thick Film, 0603	ERJ-3GEYJ332V	Panasonic
27	1	R16	$10 \mathrm{k} \Omega, 5 \%, 1 / 10 \mathrm{~W}$, Thick Film, 0603	ERJ-3GEYJ103V	Panasonic
28	1	R17	$27 \Omega, 5 \%, 1 / 10 \mathrm{~W}$, Thick Film, 0603	ERJ-3GEYJ270V	Panasonic
29	1	R18	$0.82 \Omega, 1 \%, 1 / 2 \mathrm{~W}$, Thick Film, 1206	RL1632R-R820-F	Susumu Co Ltd
30	2	$\begin{aligned} & \hline \text { R19 } \\ & \text { R20 } \\ & \hline \end{aligned}$	$47 \Omega, 5 \%, 2 \mathrm{~W}, \mathrm{MF}$ Fusible	NFR0200004709JR500	Vishay/BC Components
31	0	R22	Do not mount (unstalled/optional location only)		
32	1	RV1	275 V, $23 \mathrm{~J}, 7 \mathrm{~mm}$, RADIAL	V275LA4P	Littlefuse
33	1	T1	Custom transformer, EE16. See report for specifications	SNX-R1536	Santronics
34	1	U1	LinkSwitch-PL, LNK457DG, SO-8C	LNK457DG	Power Integrations
35	1	VR2	$20 \mathrm{~V}, 5 \%, 150 \mathrm{~mW}$, SSMINI-2	MAZS2000ML	Panasonic-SSG
36	1	J1 J2	Test point, WHT, Miniature THRU-HOLE MOUNT	5002	Keystone
37	1	J3	Test point, RED, Miniature THRU-HOLE MOUNT	5000	Keystone
38	1	J4	Test point, BLK, Miniature THRU-HOLE MOUNT	5001	Keystone

7 Transformer Design Spreadsheet

ACDC LinkSwitch-PLFlb_042910; Rev.1.0; Copyright Power Integrations 2010	INPUT	INFO	OUTPUT	UNIT	ACDC_LinkSwitch-PL_Flb_042910; LinkSwitch-PL Flyback Transformer Design Spreadsheet
ENTER APPLICATION VARIABLES					5 W Dimmable Power Factor Corrected LED Driver (Non-Isolated) Using LinkSwitch-PL LNK457DG
VACMIN	85		85	V	Minimum AC input voltage
VACMAX	265		265	V	Maximum AC input voltage
FL	50		50	Hz	Minimum line frequency
VO_MAX	18		18	V	Maximum Output Voltage
VO_MIN			10.0	V	Minimum output voltage before device operates in cycle skipping at VACMAX
10	0.35		0.350	A	Average output current
N	0.7		0.7	\%/100	Total power supply efficiency
Z	0.7		0.7		Loss allocation factor. Larger value of Z means losses are more on secondary side, smaller value of Z means more losses on primary side.
Enclosure	Open Frame		Open Frame		Enclosure selections determines thermal conditions and maximum power
PO			6.30	W	Average output power
VD			0.7	V	Output diode forward voltage drop
LinkSwitch-PL DESIGN VARIABLES					
Device	LNK457		LNK457		Chose device PO max in Open Frame: 7.357W, PO Max in Retrofit Lamp: 6.893125 W .
VOR			120.7	V	Reflected output voltage
Turns Ratio			6.5		Primary to secondary turns ratio
TON			3.27	us	Expected on-time of MOSFET at low line and PO
FSW			122.1	kHz	Expected switching frequency at low line and PO
Duty Cycle			39.9	\%	Expected operating duty cycle at low line and PO
VDRAIN			620	V	Estimated drain voltage
IRMS			0.154	A	Primary RMS current
IPK			0.595	A	Peak primary current

ACDC LinkSwitch-PL- FIb_042910; Rev.1.0; Copyright Power Integrations 2010	INPUT	INFO	OUTPUT	UNIT	ACDC_LinkSwitch-PL_Flb_042910; LinkSwitch-PL Flyback Transformer Design Spreadsheet
ILIM_MAX			0.910	A	Device peak current
KDP			1.51		Ratio between off-time of switch and reset time of core
LinkSwitch-PL EXTERNAL COMPONENT CALCULATIONS					
RSENSE			0.829	Ohms	Output current sense resistor
Standard RSENSE			0.83	Ohms	Closest 1\% value for RSENSE
PSENSE			0.102	W	Power dissipated by RSENSE
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES					
Core Type	EE16		EE16		Core Type
Core Part Number			PC40EE16-Z		Core Part Number (if Available)
Bobbin Part Number			$\begin{aligned} & \text { BE-16- } \\ & 118 \mathrm{CPH} \end{aligned}$		Bobbin Part Number (if available)
AE			19.20	mm^2	Core Effective Cross Sectional Area
LE			35.00	mm	Core Effective Path Length
AL			1140	$\mathrm{nH} / \mathrm{T}^{\wedge} 2$	Ungapped Core Effective Inductance
BW			8.6	mm	Bobbin Physical Winding Width
L			3		Number of primary winding layers
NS			20	Turns	Number of Secondary Turns
TRANSFORMER PRIMARY DESIGN PARAMETERS					
LP			0.660	mH	Primary Inductance
LP Tolerance			10	\%	Tolerance of Primary Inductance
NP			130	Turns	Primary Winding Number of Turns
ALG			39	$\mathrm{nH} / \mathrm{T}^{\wedge} 2$	Gapped Core Effective Inductance
BM			1574	Gauss	Maximum (BM < 3000 G)
BAC			787	Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)
BP_TARGET	2650		2650	Gauss	Target Peak Flux density. Recommended value of BP_TARGET < 3700 G.
BP			2647	Gauss	Peak Flux Density (BP < 3700 G)

ACDC LinkSwitch-PLFlb_042910; Rev.1.0; Copyright Power Integrations 2010	INPUT	INFO	OUTPUT	UNIT	ACDC_LinkSwitch-PL_Flb_042910; LinkSwitch-PL Flyback Transformer Design Spreadsheet
LG			0.618	mm	Gap Length (Lg > 0.1 mm)
BWE			25.8	mm	Effective Bobbin Width
OD			0.20	mm	Maximum Primary Wire Diameter including insulation
INS			0.04	mm	Estimated Total Insulation Thickness (= 2 * film thickness)
DIA			0.16	mm	Bare conductor diameter
AWG			35	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)
CM			32	Cmils	Bare conductor effective area in circular mils
CMA			208	Cmils/Amp	Primary Winding Current Capacity (200 $<C M A<500)$
Primary Current Density (J)			9.61	A/ mm^2	Primary Winding Current density ($3.8<\mathrm{J}$ $<9.75 \mathrm{~A} / \mathrm{mm}^{\wedge} 2$)
SECONDARY DESIGN PARAMETERS					
ISP			3.87	A	Peak Secondary Current
ISRMS			0.91	A	Secondary RMS current
10			0.35	A	Output Current
PIVS			83.6	V	Peak Inverse Voltage experienced by the output diode with added 10% margin added for reverse recovery voltage spike
CMS1			183	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS			27	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS			0.36	mm	Minimum Bare Conductor Diameter
ODS			1.29	mm	Maximum Outside Diameter for Triple Insulated Wire

8 Transformer Specification

8.1 Electrical Diagram

Figure 7 - Transformer Electrical Diagram.

8.2 Electrical Specifications

Electrical Strength	3 second, 60 Hz, from pins 1-2 to pins 6-7	500 VAC
Primary Inductance	Pins 1-2, all other windings open, measured at 100 kHz, 0.4 VRMS	$660 \mu \mathrm{H}, \pm 10 \%$
Resonant Frequency	Pins 1-2, all other windings open	1200 kHz (Min.)
Primary Leakage Inductance	Pins 1-2, with pins 7-9 shorted, measured at 100 kHz, 0.4 VRMS	$15 \mu \mathrm{H}$ (Max.)

8.3 Materials

Item	Description
$[1]$	Core: EE16/PC40
$[2]$	Bobbin: EE16, Horizontal, 10 pins, (5/5), TF1613 (Taiwan Shulin) or equivalent.
$[3]$	Magnet wire: \#28 AWG double coated.
$[4]$	Magnet wire: \#35 AWG double coated.
$[5]$	Tape: 3M 1298 Polyester Film, 8.0 mm wide, 2.0mils thick or equivalent.
$[6]$	Varnish.

8.4 Transformer Build Diagram

Figure 8 - Transformer Build Diagram.

Figure 9 - Transformer Assembly.

8.5 Transformer Construction

Winding Preparation	Place bobbin on the mandrel such that primary on the left and secondary on the right. Winding direction is clock-wise direction.
WD1 $1^{\text {st }}$ Half of Secondary	Start at pin 7, wind 10 bifilar turns of wire item [3] from right to left, and terminate at pin 3.
Insulation	1 layer of tape item [5].
$\begin{gathered} \text { WD2 } \\ \text { Primary } \end{gathered}$	Start at pin 2, wind 130 turns of wire item [4] in 3 layers: $44 \mathrm{~T}+43 \mathrm{~T}+43 \mathrm{~T}$, place 2 layers of tape item [5] between layers, see fig. 7 above, and terminate at pin 1.
Insulation	1 layer of tape item [5].
WD3 $2^{\text {nd }}$ Half of Secondary	Start at pin 3, wind 10 bifilar turns of wire item [3] from left to right, and terminate at pin 6.
Insulation	2 layers of tape item [5].
Finish	Grind core halves to get $660 \mu \mathrm{H}$ assemble with tape. Varnish.

8.6 Winding Illustrations

Winding Preparation
WD1
1st
Half of Secondary
Insulation
Wrimary

WD3
$2^{\text {nd }}$ Half of Secondary
Insulation
Finish
Start at pin 3, wind 10 bifilar turns of
wire item [3] from left to right, and
terminate at pin 6.

Figure 10 - Transformer Construction.

9 Performance Data

All measurements performed at room temperature otherwise specified.

9.1 Active Mode Efficiency

Figure 11 - Full Load (15 V, 350 mA) Efficiency with Respect to Line Input Voltage and Dimming or NonDimming Configuration (active damper and bleeder removed).

9.2 Non-Dimmable Configuration

Active Damper and Bleeder components removed.

Input		Input Measurement				Load Measurement			Efficiency (\%)
$\begin{aligned} & \text { VAC } \\ & \left(\mathbf{V}_{\text {RMS }}\right) \end{aligned}$	Freq (Hz)	$\begin{gathered} \mathrm{I}_{\mathrm{IN}} \\ \left(\mathrm{~mA}_{\mathrm{RMS}}\right) \end{gathered}$	$\begin{aligned} & P_{\text {IN }} \\ & (W) \end{aligned}$	PF	\%THD	$\begin{gathered} \mathrm{V}_{\mathrm{O}} \\ \left(\mathrm{~V}_{\mathrm{DC}}\right) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{O}} \\ \left(\mathrm{~mA} \mathrm{~A}_{\mathrm{DC}}\right) \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{O}} \\ (\mathrm{~W}) \end{gathered}$	
90	47	75.020	6.728	0.9973	6.6400	15.12	342.80	5.23	77.73
115	60	61.030	6.981	0.9950	8.36	15.17	358.10	5.47	78.30
132	60	53.870	7.054	0.9924	10.09	15.17	361.90	5.52	78.31
180	50	39.540	7.010	0.9853	12.02	15.15	361.10	5.52	78.69
220	50	32.160	6.902	0.9755	12.35	15.13	354.60	5.41	78.33
230	50	31.040	6.934	0.9717	12.21	15.13	356.20	5.43	78.32
265	63	27.800	6.915	0.9384	12.07	15.13	354.80	5.40	78.05
230	50	29.932	6.676	0.9700	12.53	15.08	343.50	5.22	78.21
220	50	30.723	6.577	0.9731	12.59	15.07	339.60	5.16	78.39
180	50	37.740	6.682	0.9839	12.37	15.08	345.10	5.25	78.51
132	60	50.848	6.653	0.9914	10.77	15.08	343.90	5.22	78.40
115	60	58.278	6.665	0.9945	8.7100	15.08	343.80	5.22	78.24
90	47	74.710	6.700	0.9973	6.67	15.06	342.80	5.21	77.73

9.3 Dimmable

Input		Input Measurement				Load Measurement			Efficiency (\%)
$\begin{gathered} \text { VAC } \\ \left(\mathrm{V}_{\text {RMS }}\right) \\ \hline \end{gathered}$	Freq (Hz)	$\begin{gathered} \mathrm{I}_{\mathrm{IN}} \\ \left(\mathrm{~mA}_{\mathrm{RMS}}\right) \end{gathered}$	$\begin{aligned} & P_{\text {IN }} \\ & (W) \end{aligned}$	PF	\%THD	$\begin{gathered} \mathrm{V}_{\mathrm{O}} \\ \left(\mathrm{~V}_{\mathrm{DC}}\right) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{O}} \\ \left(\mathrm{~mA}_{\mathrm{DC}}\right) \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{o}} \\ (\mathrm{~W}) \end{gathered}$	
90	47	81.250	7.29	0.9974	6.0100	15.13	349.10	5.33	73.14
115	60	65.400	7.47	0.9941	7.18	15.18	368.00	5.62	75.22
132	60	55.980	7.31	0.9895	9.6	15.16	364.90	5.57	76.16
180	50	41.920	7.35	0.9746	12.23	15.16	371.20	5.67	77.19
220	50	34.910	7.30	0.9507	13.43	15.15	369.20	5.64	77.21
230	50	33.690	7.30	0.9423	13.09	15.14	369.30	5.64	77.21
265	63	30.110	7.09	0.8886	22.46	15.11	359.00	5.45	76.88
230	50	31.986	6.89	0.9370	13.85	15.07	350.00	5.31	77.12
220	50	33.249	6.91	0.9448	13.71	15.07	351.60	5.34	77.25
180	50	39.671	6.94	0.9719	12.7	15.07	352.10	5.35	77.07
132	60	52.683	6.87	0.9877	10.57	15.05	346.60	5.25	76.42
115	60	63.186	7.22	0.9938	7.3500	15.08	358.40	5.44	75.34
90	47	79.780	7.15	0.9974	5.98	15.03	345.50	5.24	73.22

Table 1 - Full Load Characteristic, Verified with 5 White LED Series String.

9.4 Harmonics

Meets EN61000-3-2 Harmonics contents standards.

Order	Input Current Harmonics (mA)				EN 61000-3-2
	Non-Dimmable		Dimmable		
	115 V	230 V	115 V	230 V	
1	61.87	32.40	62.19	32.52	
3	1.45	1.25	1.92	1.51	P
5	3.72	1.26	3.22	1.57	P
7	0.81	1.61	1.51	1.72	P
9	0.29	1.55	0.84	1.64	P
11	1.69	1.58	1.02	1.63	P
13	0.79	1.61	0.17	1.55	P
15	0.65	1.30	0.69	1.31	P
17	0.90	0.81	1.37	1.05	P
19	1.08	0.69	1.50	0.73	P
21	0.58	0.30	0.81	0.99	P
23	0.81	0.22	1.00	0.53	P
25	0.61	0.13	0.62	0.66	P
27	0.64	0.11	0.34	0.50	P
29	0.67	0.15	0.52	0.45	P
31	0.70	0.14	0.59	0.36	P
33	0.53	0.11	0.57	0.30	P
35	0.43	0.12	0.57	0.39	P
37	0.33	0.12	0.55	0.35	P
39	0.20	0.12	0.43	0.36	P
41	0.06	0.14	0.24	0.28	
43	0.13	0.15	0.21	0.24	
45	0.20	0.09	0.12	0.27	
47	0.15	0.11	0.24	0.18	
49	0.10	0.13	0.27	0.15	

Table 2 - Harmonics Contents

