: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

- Ideal Front-End Filter for European Wireless Receivers
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Complies with Directive 2002/95/EC (RoHS) ${ }^{10}$

The RF1404D is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter designed to provide front-end selectivity in 433.92 MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF , direct conversion and superregen. Typical applications of these receivers are wireless remote-control and security devices operating in Europe under ETSI I-ETS 300220.
This coupled-resonator filter (CRF) uses selective null placement to provide suppression, typically greater than 40 dB , of the LO and image spurious responses of superhet receivers with 10.7 MHz IF. RFM's advanced SAW design and fabrication technology is utilized to achieve high performance and very low loss with simple external impedance matching.

433.92 MHz SAW Filter

Electrical Characteristics

Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units		
Center Frequency at $25^{\circ} \mathrm{C}$ Absolute Frequency	f_{c}	1, 2, 3		433.92		MHz		
Insertion Loss	$\mathrm{IL}_{\text {MIN }}$	1,3		1.6	2.5	dB		
Passband Ripple (Relative to $\mathrm{IL}_{\text {MIN }}$) Fc $\pm 200 \mathrm{kHz}$		1, 3		1.2	1.8	dB		
3 dB Bandwidth	BW_{3}	1,3	500	600	800	kHz		
Rejection Attenuation: (relative to ILmin) $10-414 \mathrm{MHz}$			50	55				
414-424 MHz			45	50				
$424-431 \mathrm{MHz}$			30	34				
$431-432 \mathrm{MHz}$		13	18	22		dB		
432-433 MHz		1,3	12	17		d		
434.92-442 MHz			11	14				
442-550 MHz			35	38				
$550-1000 \mathrm{MHz}$			50	55				
Temperature Freq. Temp. Coefficient	FTC			0.032		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}^{2}$		
Frequency Aging ${ }^{\text {a }}$ Absolute Value during the First Year	\|fA		5		≤ 10		ppm/yr	
$\begin{aligned} & \text { Input } Z_{\text {IN }}=R_{\text {IN }} \\| \mathrm{C}_{\text {IN }} \\ & \text { Output } Z_{\text {OUT }}=R_{\text {OUT }} \\| C_{\text {OUT }} \end{aligned}$	$\mathrm{Z}_{\text {IN }}$	1	2853Ω // 1.66pf					
	Z ${ }_{\text {OUT }}$		2411 Ω // 1.73pf					
Lid Symbolization (Y=year WW=week S=shift)	539 // YWWS							
Standard Reel Quantity Reel Size 7 Inch		9	500 Pieces/Reel					
Reel Size 13 Inch			3000 Pieces/Reel					

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

Notes:

1. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture which is connected to a 50Ω test system with VSWR $\leq 1.2: 1$. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_{c}. Note that insertion loss and bandwidth and passband shape are dependent on the impedance matching component values and quality.
2. The frequency f_{c} is defined as the midpoint between the 3 dB frequencies.
3. Where noted specifications apply over the entire specified operating temperature range of $-40^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$.
4. The turnover temperature, T_{O}, is the temperature of maximum (or turnover) frequency, f_{o}. The nominal frequency at any case temperature, T_{C}, may be calculated from: $f=f_{0}\left[1-F T C\left(T_{0}-T_{c}\right)^{2}\right]$.
5. Frequency aging is the change in fc with time and is specified at $+65^{\circ} \mathrm{C}$ or less. Aging may exceed the specification for prolonged temperatures above $+65^{\circ} \mathrm{C}$. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
6. The design, manufacturing process, and specifications of this device are subject to change.
7. One or more of the following U.S. Patents apply: $4,54,488,4,616,197$, and others pending.
8. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
9. Tape and Reel Standard Per ANSI / EIA 481.
10. This product complies with Directive 2002/95/EC of the European Parlament and of the Council of 27 January 2003 on the restriction of the use of certain hazadous substances in electrical and electronic equipment.

Absolute Maximum Ratings

Characteristic	Value	Units
Input Power Level	10	dBm
DC Voltage	12	VDC
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
Operable Temperature Range	-40 to +125	${ }^{\circ} \mathrm{C}$
Soldering Temperature (10 seconds $/ 5$ cycles max.)	260	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units	
Center Frequency at $25^{\circ} \mathrm{C}$ Absolute Frequency	f_{c}	1, 2, 3		433.92		MHz	
Insertion Loss	$\mathrm{IL}_{\text {MIN }}$	1, 3		2.3	3.0	dB	
Passband Ripple (Relative to $\mathrm{IL}_{\text {MIN }}$) Fc $\pm 200 \mathrm{kHz}$		1, 3		1.2	2.0	dB	
3 dB Bandwidth	BW_{3}	1,3	500	600	800	kHz	
Rejection Attenuation: (relative to ILmin) $10-414 \mathrm{MHz}$			50	53			
414-424 MHz			45	50			
424-431 MHz			30	34			
$431-432 \mathrm{MHz}$			18	22			
$432-433 \mathrm{MHz}$		1,3	12	14		dB	
434.92-442 MHz			11	14			
442-550 MHz			35	37			
$550-1000 \mathrm{MHz}$			50	55			
Temperature Freq. Temp. Coefficient	FTC			0.032		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}^{2}$	
Frequency Aging ${ }^{\text {a }}$ Absolute Value during the First Year	\|fA		5		≤ 10		ppm/yr
Impedance @ fc Input $\mathrm{Z}_{\text {IN }}=\mathrm{R}_{\text {IN }} \\| \mathrm{C}_{\text {IN }}$	$\mathrm{Z}_{\text {IN }}$	1		$53 \Omega / / 1.66$			
Output $Z_{\text {OUT }}=R_{\text {OUT }}{ }^{I I} \mathrm{C}_{\text {OUT }}$	$\mathrm{Z}_{\text {OUT }}$			$11 \Omega / / 1.73$			
Lid Symbolization ($\mathrm{Y}=$ year WW=week $\mathrm{S}=$ shift)			539 /	WWS			
Standard Reel Quantity Reel Size 7 Inch		9		500 Pi	/Reel		
Reel Size 13 Inch		9		3000 P	es/Reel		

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

Notes:

1. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture which is connected to a 50Ω test system with VSWR $\leq 1.2: 1$. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_{c}. Note that insertion loss and bandwidth and passband shape are dependent on the impedance matching component values and quality.
2. The frequency f_{c} is defined as the midpoint between the 3 dB frequencies.
3. Where noted specifications apply over the entire specified operating temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
4. The turnover temperature, T_{O}, is the temperature of maximum (or turnover) frequency, f_{o}. The nominal frequency at any case temperature, T_{c}, may be calculated from: $f=f_{0}\left[1-F T C\left(T_{0}-T_{c}\right)^{2}\right]$.
5. Frequency aging is the change in fc with time and is specified at $+65^{\circ} \mathrm{C}$ or less. Aging may exceed the specification for prolonged temperatures above $+65^{\circ} \mathrm{C}$. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
6. The design, manufacturing process, and specifications of this device are subject to change.
7. One or more of the following U.S. Patents apply: $4,54,488,4,616,197$, and others pending.
8. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
9. Tape and Reel Standard Per ANSI / EIA 481.
10. This product complies with Directive 2002/95/EC of the European Parlament and of the Council of 27 January 2003 on the restriction of the use of certain hazadous substances in electrical and electronic equipment.

PRIMARY

Electrical Connections

Pin	Connection
1	Input
2	Input Ground
3	Ground
4	Case Ground
5	Output
6	Output Ground
7	Ground
8	Case Ground

Matching Circuit to 50Ω

Case Dimensions

Dimension	mm			Inches		
	Min	Nom	Max	Min	Nom	Max
\mathbf{A}	3.6	3.8	4.0	0.14	0.15	0.16
B	3.6	3.8	4.0	0.14	0.15	0.16
C	1.00	1.20	1.40	0.04	0.05	0.055
D	0.95	1.10	1.25	0.033	0.043	0.05
E	0.90	1.0	1.10	0.035	0.04	0.043
F	0.50	0.6	0.70	0.020	0.024	0.028
G	2.39	2.54	2.69	0.090	0.100	0.110
H	1.40	1.75	2.05	0.055	0.069	0.080

OPTIONAL
Electrical Connections

Pin	Connection
1	Input Ground
2	Input
3	Ground
4	Case Ground
5	Output Ground
6	Output
7	Ground
8	Case Ground

Matching Circuit to 50Ω

RF1404D (PRIMARY)

Inductor only match

RF1404D (PRIMARY)

Inductor only match

