

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

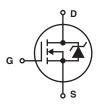
January 2002

12A, 60V, 0.150 Ohm, N-Channel Power MOSFETs

These are N-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Formerly developmental type TA49082.

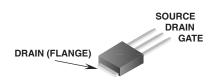
Ordering Information


PART NUMBER	PACKAGE	BRAND
RFD3055	TO-251AA	FD3055
RFD3055SM	TO-252AA	FD3055
RFP3055	TO-220AB	FP3055

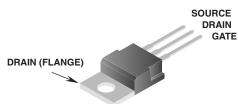
NOTE: When ordering, use the entire part number. Add the suffix 9A, to obtain the TO-252AA variant in tape and reel, i.e. RFD3055SM9A.

Features

- 12A, 60V
- $r_{DS(ON)} = 0.150\Omega$
- Temperature Compensating PSPICE® Model
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- 175°C Operating Temperature
- · Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"


Symbol

Packaging


JEDEC TO-251AA

JEDEC TO-252AA

JEDEC TO-220AB

RFD3055, RFD3055SM, RFP3055

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RFD3055, RFD3055SM, RFP3055	UNITS
Drain to Source Voltage (Note 1)	60	V
Drain to Gate Voltage ($R_{GS} = 20K\Omega$) (Note 1)	60	V
Gate to Source Voltage	±20	V
Continuous Drain Current	12	Α
Pulsed Drain Current (Note 3)	Refer to Peak Current Curve	Α
Single Pulse Avalanche Rating (Figures 14, 15)	Refer to UIS Curve	
Power DissipationP _D	53	W
Linear Derating Factor	0.357	W/oC
Operating and Storage Temperature	-55 to 175	°C
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10sTL	300	°C
Package Body for 10s, See Techbrief 334	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_{.J} = 25^{\circ}C$ to $150^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	$I_D = 250\mu A, V_{GS} = 0V \text{ (Figure 11)}$		60	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250\mu A$ (Figure 10)		2	-	4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = Rated BV _{DSS} , V _{GS} = 0V		-	-	1	μΑ
		$T_{C} = 125^{\circ}C, V_{DS}$	$T_C = 125^{\circ}C$, $V_{DS} = 0.8 \times \text{Rated BV}_{DSS}$		-	25	μΑ
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20V$		-	-	100	nA
Drain to Source On Resistance	r _{DS(ON)}	I _D = 12A, V _{GS} = 10V (Figure 9) (Note 2)		-	-	0.150	Ω
Turn-On Time	t _{ON}	$V_{DD} = 30V, I_{D} = 12A$ $R_{L} = 2.5\Omega, V_{GS} = +10V$ $R_{G} = 10\Omega$ (Figure 13)		-	-	40	ns
Turn-On Delay Time	t _{d(ON)}			-	7	-	ns
Rise Time	t _r			-	21	-	ns
Turn-Off Delay Time	t _{d(OFF)}			-	16	-	ns
Fall Time	t _f			-	10	-	ns
Turn-Off Time	tOFF			-	-	40	ns
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0 to 20V	$V_{DD} = 48V, I_D = 12A,$	-	19	23	nC
Gate Charge at 10V	Q _{g(10)}	$V_{GS} = 0$ to 10V $R_L = 4\Omega$, $I_{g(REF)} = 0.24$ mA		-	10	12	nC
Threshold Gate Charge	Q _{g(TH)}	V _{GS} = 0 to 2V	(Figure 13)	-	0.6	0.8	nC
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz (Figure 12)		-	300	-	pF
Output Capacitance	C _{OSS}			-	100	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	30	-	pF
Thermal Resistance Junction to Case	R ₀ JC			-	-	2.8	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	TO-251 and TO-252 TO-220		-	-	100	°C/W
				-	-	62.5	°C/W


Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 12A	-	-	1.5	V
Reverse Recovery Time	t _{rr}	$I_{SD} = 12A$, $dI_{SD}/dt = 100A/\mu s$	-	-	100	ns

NOTES:

- 2. Pulse Test: Pulse Width \leq 300ms, Duty Cycle \leq 2%.
- 3. Repetitive Rating: Pulse Width limited by max junction temperature. See Transient Thermal Impedance Curve (Figure 3) and Peak Current Capability Curve (Figure 5).

Typical Performance Curves Unless Otherwise Specified

14 12 ID, DRAIN CURRENT (A) 10 8 6 4 2 0 50 25 75 100 125 150 175 T_C, CASE TEMPERATURE (°C)

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

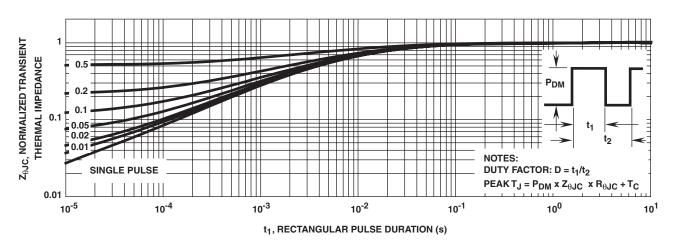


FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

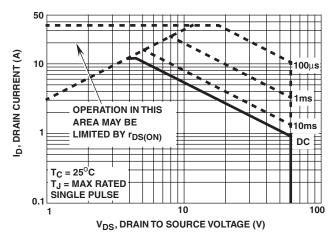


FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

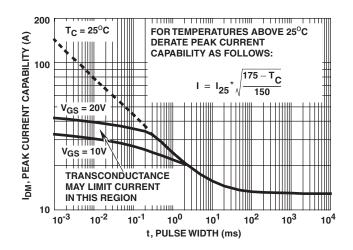


FIGURE 5. PEAK CURRENT CAPABILITY

Typical Performance Curves Unless Otherwise Specified (Continued)

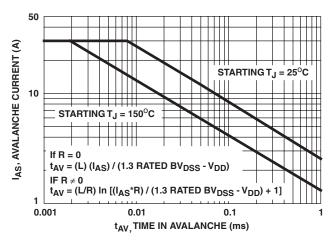


FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING

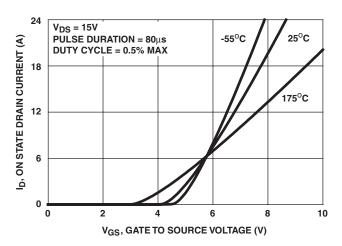


FIGURE 8. TRANSFER CHARACTERISTICS

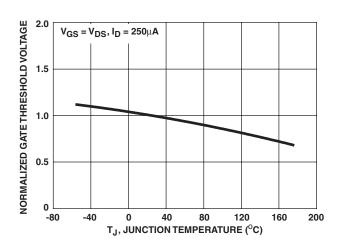


FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs TEMPERATURE

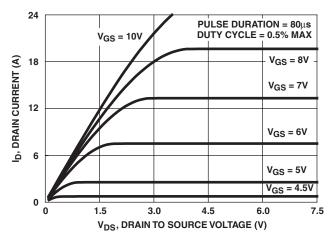


FIGURE 7. SATURATION CHARACTERISTICS

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

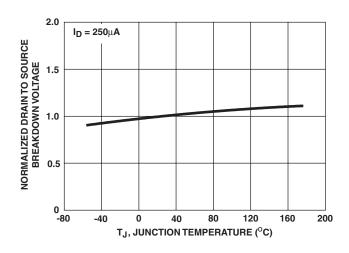


FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs TEMPERATURE

Typical Performance Curves Unless Otherwise Specified (Continued)

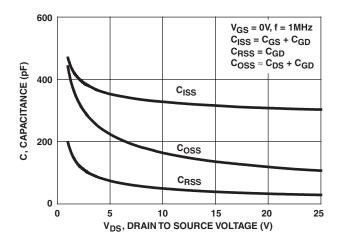
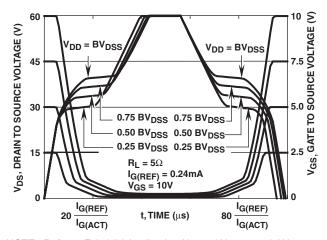



FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.

FIGURE 13. NORMALIZED SWITCHING WAVEFORMS FOR

CONSTANT GATE CURRENT

Test Circuits and Waveforms

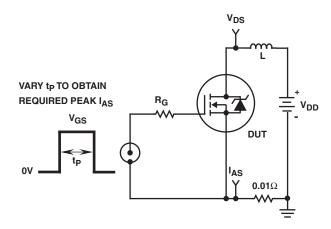


FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT

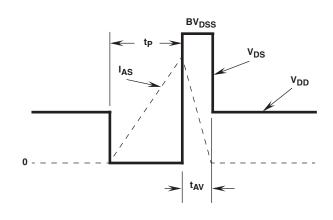


FIGURE 15. UNCLAMPED ENERGY WAVEFORMS

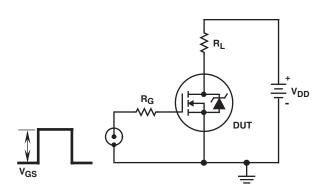


FIGURE 16. SWITCHING TIME TEST CIRCUIT

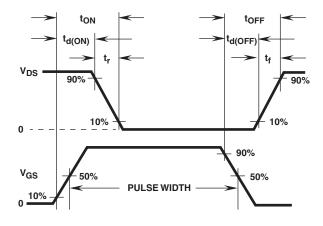
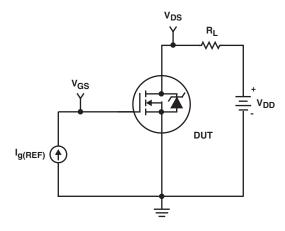



FIGURE 17. RESISTIVE SWITCHING WAVEFORMS

Test Circuits and Waveforms (Continued)

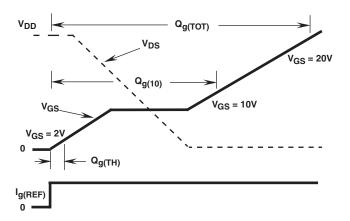
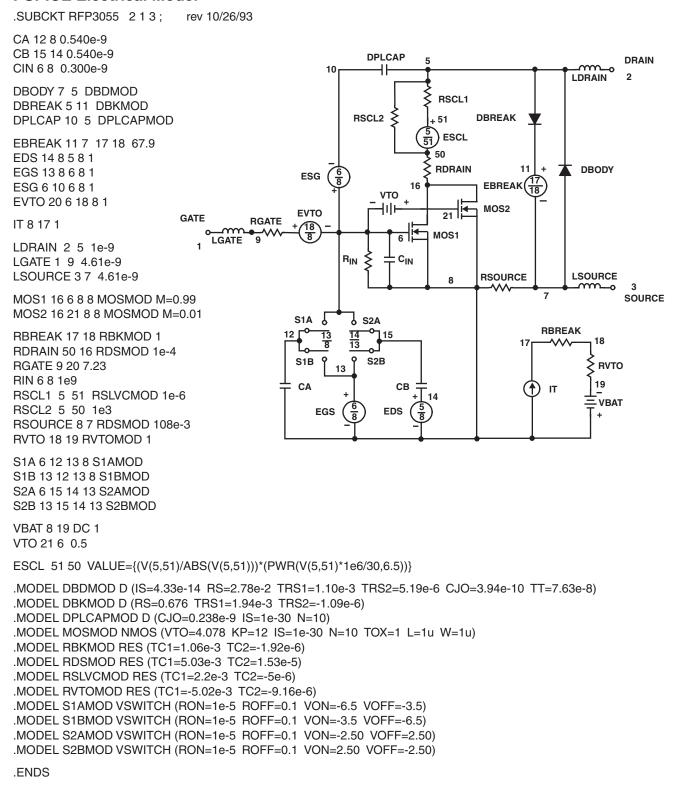



FIGURE 19. GATE CHARGE WAVEFORMS

PSPICE Electrical Model

NOTE: For further discussion of the PSPICE model consult **A New PSPICE Sub-Circuit for the Power MOSFet Featuring Global Temperature Options**; authored by William J. Hepp and C. Frank Wheatley.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FAST ® SMART START™ VCX^{TM} ACEx™ OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMANTM SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $\mathsf{HiSeC^{\mathsf{TM}}}$ SuperSOT™-8 DOME™ PowerTrench® SyncFET™ ISOPLANAR™ EcoSPARK™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM} EnSigna™ MicroFET™ TruTranslation™ QT Optoelectronics™ MicroPak™ UHC™ **FACT™** Quiet Series™ UltraFET® FACT Quiet Series™ MICROWIRE™ SILENT SWITCHER®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H4