imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

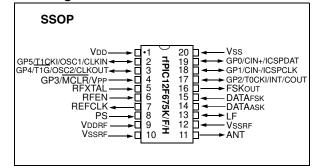
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FLASH-Based Microcontroller with ASK/FSK Transmitter

High Performance RISC CPU:

- · Only 35 instructions to learn
 - All single cycle instructions except branches
- Operating speed:
 - Precision Internal 4 MHz oscillator, factory calibrated to $\pm 1\%$
 - DC 20 MHz Resonator/Crystal/Clock modes
 - DC 20 MHz crystal oscillator/clock input
 - DC 4 MHz external RC oscillator
 - DC 4 MHz XT crystal oscillator
 - External Oscillator modes
- · Interrupt capability
- 8-level deep hardware stack
- Direct, Indirect and Relative Addressing modes


Peripheral Features:

- · Memory
 - 1024 x 14 words of FLASH program memory
 - 128 x 8 bytes of EEPROM data memory
 - 64 x 8 bytes of SRAM data memory
 - 100,000 write FLASH endurance
 - 1,000,000 write EEPROM endurance
 - FLASH/data EEPROM retention: > 40 years
- · Programmable code protection
- 6 I/O pins with individual direction control, weak pull-ups, and interrupt-on-pin change
- · High current sink/source for direct LED drive
- Analog comparator: 16 internal reference levels
- · Analog-to-Digital Converter: 10 bits, 4 channels
- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with 3-bit prescaler
- Timer1 can use LP oscillator in INTOSC mode
- 5 μs wake-up from SLEEP typical with VDD = 3V
- In-Circuit Serial Programming[™] (ICSP[™])

Low Power Features:

- Low power consumption: (typical with VDD = 3V)
 - 14 mA transmitting +6 dBm at 434 MHz
 - 4 mA transmitting -15 dBm at 434 MHz
 - 500 $\mu\text{A},\,4.0~\text{MHz}$ INTOSC
 - 0.6 µA SLEEP with watchdog enabled
 - 0.1 µA standby current
- Wide operating voltage range from 2.0 5.5V
- Industrial and Extended temperature range

Pin Diagram:

UHF ASK/FSK Transmitter:

- Integrated crystal oscillator, VCO, loop filter and power amp for minimum external components
- ASK data rate: 0 40 Kbps
- FSK data rate: 0 40 Kbps by crystal pulling
- Output power: +10 dBm to -12 dBm in 4 steps
- · Adjustable transmitter power consumption
- Transmit frequency set by crystal multiplied by 32
- VCO phase locked to quartz crystal reference; allows narrow band receivers to be used to maximize range and interference immunity
- Crystal frequency divide by 4 available (REFCLK)
- Used in applications conforming to US FCC Part 15.231 and European EN 300 220 regulations

Applications:

- · Automotive Remote Keyless Entry (RKE) systems
- · Automotive alarm systems
- · Community gate and garage door openers
- · Burglar alarm systems
- · Building access
- · Low power telemetry
- · Meter reading
- Tire pressure sensors
- · Wireless sensors

Device	Frequency	Modulation		
rfPIC12F675K	290-350 MHz	ASK/FSK		
rfPIC12F675F	380-450 MHz	ASK/FSK		
rfPIC12F675H	850-930 MHz	ASK/FSK		

Table of Contents

1.0	Device Overview	3
2.0	Memory Organization	5
3.0	GPIO Port	17
4.0	Timer0 Module	25
5.0	Timer1 Module with Gate Control	28
6.0	Comparator Module	
7.0	Analog-to-Digital Converter (A/D) Module	39
8.0	Data EEPROM Memory	45
	UHF ASK/FSK Transmitter	
10.0	Special Features of the CPU	55
11.0	Instruction Set Summary	73
12.0	Development Support	81
13.0	Electrical Specifications	87
14.0	DC and AC Characteristics Graphs and Tables	13
15.0	Packaging Information 1	123
Appe	andix A: Data Sheet Revision History	125
Index	٢ 1	27
On-L	ine Support 1	31
Syste	ems Information and Upgrade Hot Line 1	31
Read	ler Response 1	32
Prod	uct Identification System 1	133

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

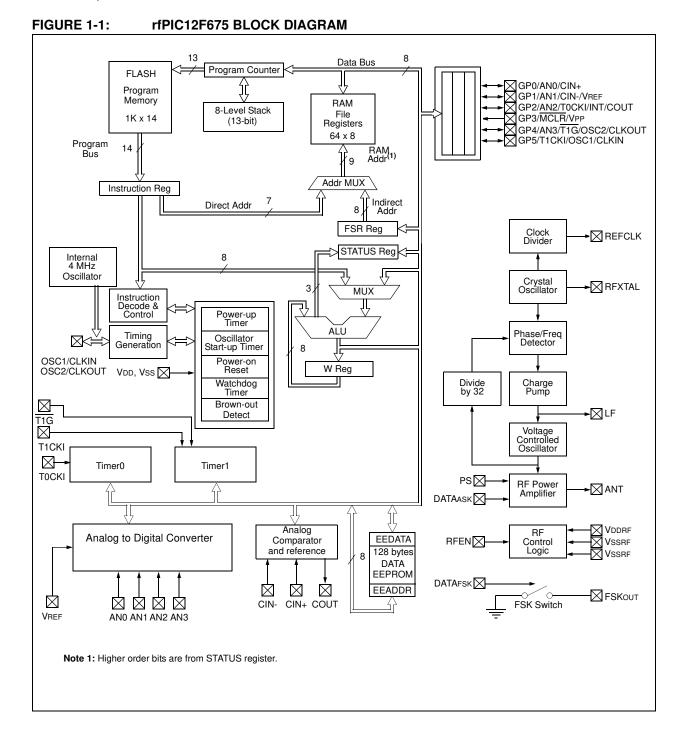
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

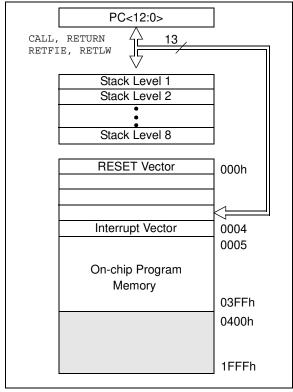

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device specific information for the rfPIC12F675. Additional information may be found in the *PICmicroTM Mid-Range Reference Manual* (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this Data Sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The rfPIC12F675 comes in a 20-pin SSOP package. Figure 1-1 shows a block diagram of the rfPIC12F675 device. Table 1-1 shows the pinout description.


TABLE 1-1: rfPIC12F675 PINOUT BUFFER WEAK PIN DESCRIPTION PULL-UP IN OUT Vdd Direct Power Supply 1 General purpose I/O. Individually controlled interrupt-on-change. GP5 TTL CMOS Prog Individually enabled pull-up. T1CKI ST Timer1 clock 2 OSC1 Xtal Bias **XTAL** connection CLKIN ST External RC network or clock input General purpose I/O. Individually controlled interrupt-on-change. GP4 TTL CMOS Prog Individually enabled pull-up. T1G ST Timer1 gate 3 AN3 A/D Channel 3 input Analog _ _ OSC2 Xtal **XTAL** connection Bias CLKOUT CMOS Tosc/4 reference clock ____ ____ General purpose input. Individually controlled interrupt-on-GP3 TTL change. 4 MCLR ST No Master Clear Reset ____ VPP ΗV ____ Programming voltage 5 RFXTAL Xtal Xtal Bias **RF** Crystal RFEN 6 TTI **RF** Enable Reference Clock/4 Output (on rfPIC12F675K/F) 7 REFCLK CMOS Reference Clock/8 Output (on rfPIC12F675H) PS 8 Power Select Analog Bias ____ RF Power Supply 9 VDDRF Direct 10 Direct **RF Ground Reference** VSSRF 11 ANT OD RF power amp output to antenna 12 VSSRF Direct **RF Ground Reference** ____ LF Loop Filter 13 Analog Analog 14 TTL ASK modulation data DATAASK 15 DATAFSK TTL FSK modulation data _ 16 **FSKOUT** OD FSK output to modulate reference crystal ____ General purpose I/O. Individually controlled interrupt-on-change. GP2 ST CMOS Prog Individually enabled pull up. AN2 Analog A/D Channel 2 input 17 COUT CMOS Comparator output _ ____ **T0CKI** ST External clock for Timer0 INT ST External interrupt ____ _ General purpose I/O. Individually controlled interrupt-on-change. GP1 TTL CMOS Prog Individually enabled pull-up. AN1 Analog A/D Channel 1 input _ _ 18 CIN-Analog Comparator input - negative _ ____ VREF External voltage reference Analog ___ _ **ICSPCLK** ST Serial programming clock General purpose I/O. Individually controlled interrupt-on-change. GP0 TTL CMOS Prog Individually enabled pull-up. AN0 A/D Channel 0 input Analog 19 CIN+ Comparator input - positive Analog _ ICSPDAT TTL CMOS Serial Programming Data I/O 20 Vss Direct Ground reference TTL = TTL input buffer, ST = Schmitt Trigger input buffer, OD = Open Drain output Legend:

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

The rfPIC12F675 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h - 03FFh) for the rfPIC12F675 devices is physically implemented. Accessing a location above these boundaries will cause a wrap around within the first 1K x 14 space. The RESET vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1).

2.2 Data Memory Organization

The data memory (see Figure 2-2) is partitioned into two banks, which contain the General Purpose registers and the Special Function registers. The Special Function registers are located in the first 32 locations of each bank. Register locations 20h-5Fh are General Purpose registers, implemented as static RAM and are mapped across both banks. All other RAM is unimplemented and returns '0' when read. RP0 (STATUS<5>) is the bank select bit.

- RP0 = 0 Bank 0 is selected
- RP0 = 1 Bank 1 is selected
- Note: The IRP and RP1 bits STATUS<7:6> are reserved and should always be maintained as '0's.
- 2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 64×8 in the rfPIC12F675 devices. Each register is accessed, either directly or indirectly, through the File Select Register FSR (see Section 2.4).

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-2: DATA MEMORY MAP OF THE rfPIC12F675

Indirect addr. ⁽¹⁾	00h	Indirect addr.(1)	801
TMR0	01h	OPTION_REG	811
PCL	02h	PCL	821
STATUS	03h	STATUS	831
FSR	04h	FSR	84
GPIO	05h	TRISIO	85ł
ano	06h	111010	86
	07h		87ł
	08h		88
	09h		89ł
PCLATH	0Ah	PCLATH	8A
INTCON	0Bh	INTCON	8B
PIR1	0Ch	PIE1	8C
FINI	0Dh	FIEI	8D
		DOON	-
TMR1L	0Eh	PCON	8E
TMR1H	0Fh	000041	8Fł
T1CON	10h	OSCCAL	90ł
	11h		91ł
	12h		92ł
	13h		93ł
	14h		94ł
	15h	WPU	95ł
	16h	IOC	96ł
	17h		97ł
	18h		98ł
CMCON	19h	VRCON	99ł
	1Ah	EEDATA	9AI
	1Bh	EEADR	9Bl
	1Ch	EECON1	9C
	1Dh	EECON2 ⁽¹⁾	9D
ADRESH	1Eh	ADRESL	9EI
ADCON0	1Fh	ANSEL	9Fł
General	20h		AOI
Purpose		accesses	
Registers		20h-5Fh	
64 Bytes			
	5Fh		DF
	60h		EOI
Deal	7Fh	Declar	FFI
Bank 0		Bank 1	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 0											
00h	INDF ⁽¹⁾	Addressing	ressing this Location uses Contents of FSR to Address Data Memory								16,63
01h	TMR0	Timer0 Mod	lule's Registe	er						XXXX XXXX	25
02h	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	15
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	то	PD	Z	DC	С	0001 1xxx	9
04h	FSR	Indirect Dat	a Memory Ac	dress Pointe	er			•		xxxx xxxx	16
05h	GPIO	—	—	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0	xx xxxx	17
06h	_	Unimpleme	nted	•	•	•		•		—	_
07h	_	Unimpleme	nted							_	—
08h	_	Unimpleme	nted							—	_
09h	_	Unimpleme	nted							—	_
0Ah	PCLATH	_	—	_	Write Buffer	for Upper 5	bits of Progra	am Counter		0 0000	15
0Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	11
0Ch	PIR1	EEIF	ADIF	_	_	CMIF	_	-	TMR1IF	0000	13
0Dh	—	Unimpleme	nted							_	—
0Eh	TMR1L	Holding Reg	gister for the	Least Signifi	cant Byte of t	he 16-bit Tim	ier1			xxxx xxxx	28
0Fh	TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of th	ne 16-bit Time	er1			xxxx xxxx	28
10h	T1CON	_	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	-000 0000	30
11h	_	Unimpleme	nted	•	•	•		•		_	_
12h	_	Unimpleme	nted							_	_
13h	_	Unimpleme	nted							_	_
14h	_	Unimpleme	nted							_	_
15h	_	Unimpleme	nted							—	_
16h	_	Unimpleme	nted							—	_
17h	_	Unimpleme	nted							—	_
18h	_	Unimpleme	nted							—	_
19h	CMCON	—	COUT	_	CINV	CIS	CM2	CM1	CM0	-0-0 0000	33
1Ah	_	Unimpleme	nted					•		—	_
1Bh	-	Unimpleme	nted							—	_
1Ch	-	Unimpleme	nted							—	—
1Dh	_	Unimpleme	nted							—	—
1Eh	ADRESH	Most Signifi	cant 8 bits of	the Left Shif	ted A/D Resi	ult or 2 bits of	the Right SI	nifted Result		xxxx xxxx	40
1Fh	ADCON0	ADFM	VCFG	_	_	CHS1	CHS0	GO/DONE	ADON	00 0000	41,63

TABLE 2-1:	SPECIAL	FUNCTION REGISTE	ERS SUMMARY

Note 1: This is not a physical register.

2: These bits are reserved and should always be maintained as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 1											
80h	INDF ⁽¹⁾	Addressing	dressing this Location uses Contents of FSR to Address Data Memory								
81h	OPTION_REG	GPPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	10,26
82h	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	15
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	9
84h	FSR	Indirect Dat	a Memory Ac	dress Pointe	er				•	xxxx xxxx	16
85h	TRISIO	—	—	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	17
86h	—	Unimpleme	nted	•	•	•		•		—	—
87h	_	Unimpleme	nted							—	_
88h	_	Unimpleme	nted							—	_
89h	-	Unimpleme	nted							_	—
8Ah	PCLATH	_	_	_	Write Buffer	for Upper 5	bits of Progra	am Counter		0 0000	15
8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	11
8Ch	PIE1	EEIE	ADIE	_	_	CMIE	_	_	TMR1IE	0000	12
8Dh	-	Unimpleme	nted							_	—
8Eh	PCON	_	—	—	—	—		POR	BOD	0x	14
8Fh	—	Unimpleme	nted							—	—
90h	OSCCAL	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	—	_	1000 00	14
91h	—	Unimpleme	nted							—	—
92h	—	Unimpleme	nted							—	—
93h	—	Unimpleme	nted							—	—
94h	—	Unimpleme	nted							—	—
95h	WPU	—		WPU5	WPU4	-	WPU2	WPU1	WPU0	11 -111	18
96h	IOC	—	—	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	19
97h	—	Unimpleme	nted							—	—
98h	—	Unimpleme	nted							—	—
99h	VRCON	VREN	—	VRR	-	VR3	VR2	VR1	VR0	0-0- 0000	38
9Ah	EEDATA	Data EEPR	OM Data Reg	gister						0000 0000	45
9Bh	EEADR	_	Data EEPR	OM Address	Register					-000 0000	45
9Ch	EECON1	_	_	_	_	WRERR	WREN	WR	RD	x000	46
9Dh	EECON2 ⁽¹⁾	EEPROM C	ontrol Regist	er 2							46
9Eh	ADRESL	Least Signif	icant 2 bits o	f the Left Sh	fted A/D Res	ult of 8 bits o	r the Right S	hifted Result		XXXX XXXX	40
9Fh	ANSEL	_	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	42,63

TABLE 2-1: SPECIAL FUNCTION REGISTERS SUMMARY (CONTINUED)

Note 1: This is not a physical register.

2: These bits are reserved and should always be maintained as '0'.

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains:

- · the arithmetic status of the ALU
- · the RESET status
- the bank select bits for data memory (SRAM)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any STATUS bits. For other instructions not affecting any STATUS bits, see the "Instruction Set Summary".

- Note 1: Bits IRP and RP1 (STATUS<7:6>) are not used by the rfPIC12F675 and should be maintained as clear. Use of these bits is not recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C</u> and <u>DC</u> bits operate as a Borrow and <u>Digit</u> Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

	Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x			
	IRP	RP1	RP0	TO	PD	Z	DC	С			
	bit 7							bit 0			
bit 7	IRP: This b	oit is reserve	d and shoul	d be mainta	ined as '0'						
bit 6	RP1: This	RP1: This bit is reserved and should be maintained as '0'									
bit 5	1 = Bank 1	RP0: Register Bank Select bit (used for direct addressing) 1 = Bank 1 (80h - FFh) 0 = Bank 0 (00h - 7Fh)									
bit 4	1 = After p	TO: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred									
bit 3		-down bit ower-up or b cution of the			n						
bit 2		sult of an ari sult of an ari				D					
bit 1	For borrow 1 = A carry	arry/borrow , the polarity -out from th ry-out from t	v is reversed e 4th low or	l. der bit of the	e result occu	instructions) rred					
bit 0	1 = A carry	prrow bit (AD -out from th ry-out from t	e Most Sign	ificant bit of	the result or	curred					
	Note:	complemen	t of the sec	ond operan	d. For rotate	on is execut e (RRF, RLF) e source reg	instructions	•			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

© 2003-2013 Microchip Technology Inc.

2.2.2.2 OPTION Register

The OPTION register is a readable and writable register, which contains various control bits to configure:

- n = Value at POR

- TMR0/WDT prescaler
- External GP2/INT interrupt
- TMR0
- Weak pull-ups on GPIO

REGISTER 2-2: OPTION_REG — OPTION REGISTER (ADDRESS: 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
	GPPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0			
	bit 7							bit 0			
bit 7	1 = GPIO	PIO Pull-up E pull-ups are pull-ups are	disabled	individual po	rt latch valu	es					
bit 6	1 = Interru	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of GP2/INT pin 0 = Interrupt on falling edge of GP2/INT pin									
bit 5	1 = Transit	R0 Clock So tion on GP2/ al instruction	T0CKI pin								
bit 4	1 = Increm	-	-to-low trans	bit sition on GP2 sition on GP2	•						
bit 3	1 = Presca	caler Assigr aler is assigr aler is assigr	ned to the W	/DT MER0 modu	lle						
bit 2-0	PS2:PS0:	Prescaler R	ate Select b	oits							
	l	Bit Value T	MR0 Rate	WDT Rate							
	-	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128							
	Legend:										
	R = Reada	able bit	W = V	Vritable bit	U = Unin	nplemented	bit, read as '	0'			

Note:	To achieve a 1:1 prescaler assignment for						
	TMR0, assign the prescaler to the WDT by						
	setting PSA bit to '1' (OPTION<3>). See						
	Section 4.4						

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, GPIO port change and external GP2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON — INTERRUPT CONTROL REGISTER (ADDRESS: 0Bh OR 8Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF			
	bit 7							bit 0			
bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts										
bit 6	PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts										
bit 5	TOIE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt										
bit 4	1 = Enable	/INT Externations the GP2/II as the GP2/II	NT external	interrupt							
bit 3	1 = Enable	Change Int s the GPIO es the GPIO	port change	interrupt							
bit 2	1 = TMR0	0 Overflow l register has register did	overflowed	(must be cle	eared in soft	ware)					
bit 1	1 = The GI	/INT Externa P2/INT exter P2/INT exter	nal interrupi	t occurred (r		red in softwa	are)				
bit 0	1 = When a	Change Intention Change Intention at least one of the GP5:C	of the GP5:	GP0 pins ch		(must be cl	eared in soft	ware)			
	Note 1:	IOC registe	er must also	be enabled	to enable ar	n interrupt-o	n-change.				
	2:		set when 1 nitialized be			ER0 is unch	anged on F	RESET and			
	Legend:										
	R = Reada	ble bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	0'			

- n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

2.2.2.4 PIE1 Register

The PIE1 register contains the interrupt enable bits, as shown in Register 2-4.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

	R/W-0 F	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0		
	EEIE	ADIE	_	—	CMIE	_	_	TMR1IE		
	bit 7							bit 0		
bit 7	EEIE: EE Write 1 = Enables th 0 = Disables th	e EE wri	te complete	interrupt						
bit 6										
bit 5-4	Unimplemented: Read as '0'									
bit 3	CMIE: Comparator Interrupt Enable bit 1 = Enables the comparator interrupt 0 = Disables the comparator interrupt									
bit 2-1	Unimplemented: Read as '0'									
bit 0	TMR1IE: TMR 1 = Enables th 0 = Disables th	e TMR1	overflow int	errupt						
	Legend:									
	R = Readable	bit	W = W	/ritable bit	U = Unim	plemented	bit, read as	; '0'		
	- n = Value at F	POR	'1' = B	it is set	'0' = Bit is	s cleared	x = Bit is	unknown		

REGISTER 2-4: PIE1 — PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS: 8Ch)

2.2.2.5 PIR1 Register

The PIR1 register contains the interrupt flag bits, as shown in Register 2-5.

- n = Value at POR

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1 — PERIPHERAL INTERRUPT REGISTER 1 (ADDRESS: 0Ch)

EN 2-5.					SIER I (A	DDRESS.				
	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0		
	EEIF	ADIF	_	—	CMIF	_		TMR1IF		
	bit 7							bit 0		
bit 7	1 = The wr	ite operatior	completed	nterrupt Flag (must be cle mpleted or h	eared in soft	,				
bit 6	ADIF: A/D Converter Interrupt Flag bit 1 = The A/D conversion is complete (must be cleared in software) 0 = The A/D conversion is not complete									
bit 5-4	Unimplem	ented: Read	d as '0'							
bit 3	1 = Compa	nparator Inte Irator input h Irator input h	as changed	l (must be cl	eared in sof	tware)				
bit 2-1	Unimplem	ented: Read	d as '0'							
bit 0	1 = TMR1 I	MR1 Overflo register over register did	flowed (mus	st be cleared	l in software)				
	Legend:									
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	plemented	bit, read as '	0'		

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

2.2.2.6 PCON Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Detect (BOD)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON Register bits are shown in Register 2-6.

REGISTER 2-6: PCON — POWER CONTROL REGISTER (ADDRESS: 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x
	—	_	—	—	_	POR	BOD
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR:** Power-on Reset STATUS bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 **BOD**: Brown-out Detect STATUS bit

- 1 = No Brown-out Detect occurred
- 0 = A Brown-out Detect occurred (must be set in software after a Brown-out Detect occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

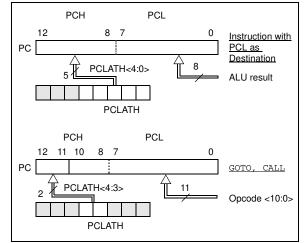
2.2.2.7 OSCCAL Register

bit 7-2

bit 1-0

The Oscillator Calibration register (OSCCAL) is used to calibrate the internal 4 MHz oscillator. It contains 6 bits to adjust the frequency up or down to achieve 4 MHz.

The OSCCAL register bits are shown in Register 2-7.


REGISTER 2-7: OSCCAL — OSCILLATOR CALIBRATION REGISTER (ADDRESS: 90h)

R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_			
bit 7							bit			
100000 = 0	111111 = Maximum frequency 100000 = Center frequency 000000 = Minimum frequency									
Unimplemented: Read as '0'										
Unimplem	chicu. nea	1 45 0								
Legend:										
•			ritable bit	U = Unin	plemented	bit, read as '	0'			

2.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any RESET, the PC is cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in Figure 2-3 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-3 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note *"Implementing a Table Read"* (AN556).

2.3.2 STACK

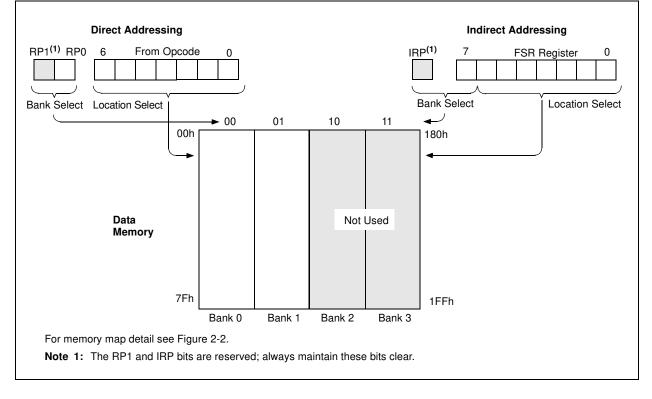
The rfPIC12F675 Family has an 8-level deep x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

2.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although STATUS bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-4.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: INDIRECT ADDRESSING

	movlw	0x20	; initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	; inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;no clear next
CONTINUE			;yes continue

FIGURE 2-4: DIRECT/INDIRECT ADDRESSING rfPIC12F675

3.0 GPIO PORT

There are as many as six general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

Note:	Additional information on I/O ports may be
	found in the PIC Mid-Range Reference
	Manual (DS33023)

3.1 GPIO and the TRISIO Registers

GPIO is an 6-bit wide, bi-directional port. The corresponding data direction register is TRISIO. Setting a TRISIO bit (= 1) will make the corresponding GPIO pin an input (i.e., put the corresponding output driver in a Hi-impedance mode). Clearing a TRISIO bit (= 0) will make the corresponding GPIO pin an output (i.e., put the contents of the output latch on the selected pin). The exception is GP3, which is input only and its TRISIO bit will always read as '1'. Example 3-1 shows how to initialize GPIO.

Reading the GPIO register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch. GP3 reads '0' when MCLREN = 1.

The TRISIO register controls the direction of the GP pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISIO

register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

Note:	The ANSEL (9Fh) and CMCON (19h)
	registers (9Fh) must be initialized to
	configure an analog channel as a digital
	input. Pins configured as analog inputs will
	read '0'.

EXAMPLE 3-1: INITIALIZING GPIO

	-	
bcf	STATUS, RPO	;Bank 0
clrf	GPIO	;Init GPIO
movlw	07h	;Set GP<2:0> to
movwf	CMCON	;digital IO
bsf	STATUS, RPO	;Bank 1
clrf	ANSEL	;Digital I/O
movlw	0Ch	;Set GP<3:2> as inputs
movwf	TRISIO	;and set GP<5:4,1:0>
		;as outputs

3.2 Additional Pin Functions

Every GPIO pin on the rfPIC12F675 has an interrupton-change option and every GPIO pin, except GP3, has a weak pull-up option. The next two sections describe these functions.

3.2.1 WEAK PULL-UP

Each of the GPIO pins, except GP3, has an individually configurable weak internal pull-up. Control bits WPUx enable or disable each pull-up. Refer to Register 3-3. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the GPPU bit (OPTION<7>).

REGISTER 3-1: GPIO — GPIO REGISTER (ADDRESS: 05h)

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0
bit 7	•	•	•				bit 0

bit 7-6: Unimplemented: Read as '0'

bit 5-0: **GPIO<5:0>**: General Purpose I/O pin.

1 = Port pin is >VIH 0 = Port pin is <VIL

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

© 2003-2013 Microchip Technology Inc.

bit 7-6 bit 5-4

REGISTER 3-2: TRISIO — GPIO TRISTATE REGISTER (ADDRESS: 85h)

U-0	U-0	R/W-x	R/W-x	R-1	R/W-x	R/W-x	R/W-x
_		TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0
bit 7							bit 0

bit 7-6: **Unimplemented**: Read as '0'

bit 5-0: **TRISIO<5:0>**: General Purpose I/O Tri-State Control bit

1 = GPIO pin configured as an input (tri-stated)

0 =GPIO pin configured as an output.

Note: TRISIO<3> always reads 1.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 3-3: WPU — WEAK PULL-UP REGISTER (ADDRESS: 95h)

U-0	U-0	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1	
	_	WPU5	WPU4		WPU2	WPU1	WPU0	
bit 7							bit 0	
Unimplemented: Read as '0'								
WPU<5:4>: Weak Pull-up Register bit								
WPU<5:4>	: Weak Pull	-up Reaister	^r bit					
WPU<5:4> 1 = Pull-up		-up Register	^r bit					

bit 3 Unimplemented: Read as '0'

- bit 2-0 WPU<2:0>: Weak Pull-up Register bit
 - 1 = Pull-up enabled
 - 0 = Pull-up disabled
 - **Note 1:** Global GPPU must be enabled for individual pull-ups to be enabled.
 - 2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISIO = 0).

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.2.2 INTERRUPT-ON-CHANGE

Each of the GPIO pins is individually configurable as an interrupt-on-change pin. Control bits IOC enable or disable the interrupt function for each pin. Refer to Register 3-4. The interrupt-on-change is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of GPIO. The 'mismatch' outputs of the last read are OR'd together to set, the GP Port Change Interrupt flag bit (GPIF) in the INTCON register. This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of GPIO. This will end the mismatch condition.
- b) Clear the flag bit GPIF.

A mismatch condition will continue to set flag bit GPIF. Reading GPIO will end the mismatch condition and allow flag bit GPIF to be cleared.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the GPIF interrupt flag may not get set.

REGISTER 3-4: IOC — INTERRUPT-ON-CHANGE GPIO REGISTER (ADDRESS: 96h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IOC<5:0>: Interrupt-on-Change GPIO Control bit

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

Note 1: Global interrupt enable (GIE) must be enabled for individual interrupts to be recognized.

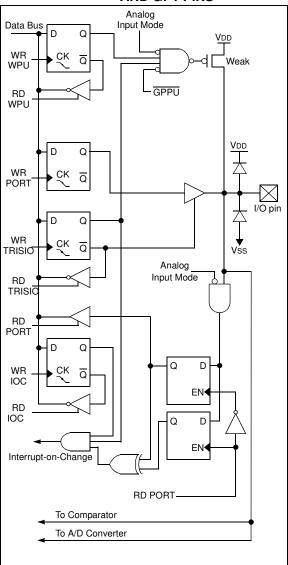
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.3 Pin Descriptions and Diagrams

Each GPIO pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the A/D, refer to the appropriate section in this Data Sheet.

3.3.1 GP0/AN0/CIN+

Figure 3-1 shows the diagram for this pin. The GP0 pin is configurable to function as one of the following:


- a general purpose I/O
- an analog input for the A/D
- · an analog input to the comparator

3.3.2 GP1/AN1/CIN-/VREF

Figure 3-1 shows the diagram for this pin. The GP1 pin is configurable to function as one of the following:

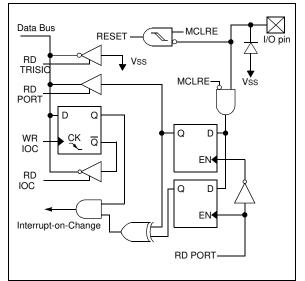
- as a general purpose I/O
- an analog input for the A/D
- an analog input to the comparator
- a voltage reference input for the A/D

FIGURE 3-1: BLOCK DIAGRAM OF GP0 AND GP1 PINS

3.3.3 GP2/AN2/T0CKI/INT/COUT

Figure 3-2 shows the diagram for this pin. The GP2 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D
- · the clock input for TMR0
- · an external edge triggered interrupt
- · a digital output from the comparator


FIGURE 3-2: **BLOCK DIAGRAM OF GP2** Analog Input Mode Data Bus Q D Vdd WR CK Q Weak WPU GPPU RD WPU Analog COUT Input Mode Enable Vdd D Q Ţ WR СК Q PORT COUT \mathbb{X} 0 I/O pin D Q WR CK Q TRISI Analog Input Mode RD TRISI ð RD POR Q D Q D WR CK Q IOC EN• RD IOC D Q ΕN Interrupt-on-Change **RD PORT** To TMR0 To INT

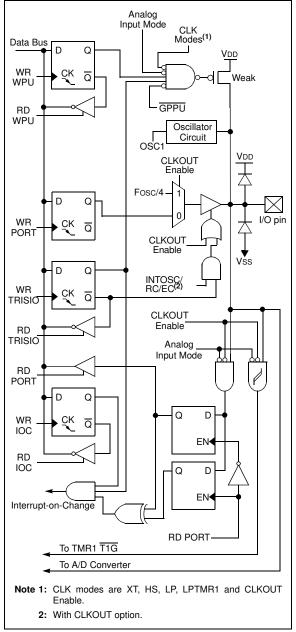
3.3.4 GP3/MCLR/VPP

Figure 3-3 shows the diagram for this pin. The GP3 pin is configurable to function as one of the following:

- a general purpose input
- as Master Clear Reset

FIGURE 3-3: BLOCK DIAGRAM OF GP3

© 2003-2013 Microchip Technology Inc.


To A/D Converter

3.3.5 GP4/AN3/T1G/OSC2/CLKOUT

Figure 3-4 shows the diagram for this pin. The GP4 pin is configurable to function as one of the following:

- a general purpose I/O
- · an analog input for the A/D
- a TMR1 gate input
- · a crystal/resonator connection
- · a clock output

FIGURE 3-4: **BLOCK DIAGRAM OF GP4**

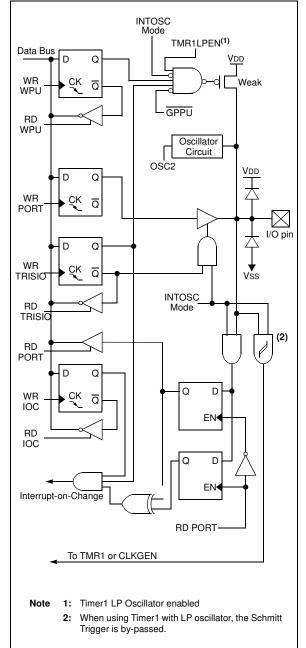

3.3.6 GP5/T1CKI/OSC1/CLKIN

Figure 3-5 shows the diagram for this pin. The GP5 pin is configurable to function as one of the following:

- a general purpose I/O
- · a TMR1 clock input
- a crystal/resonator connection
- · a clock input

BLOCK DIAGRAM OF GP5

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOD	Value on all other RESETS
05h	GPIO	_	—	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	uu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 000u
19h	CMCON		COUT	_	CINV	CIS	CM2	CM1	CM0	-0-0 0000	-0-0 0000
81h	OPTION_REG	GPPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISIO	_	—	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111
95h	WPU	_	—	WPU5	WPU4	_	WPU2	WPU1	WPU0	11 -111	11 -111
96h	IOC	_	_	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	00 0000
9Fh	ANSEL	_	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	-000 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by GPIO.

NOTES:

4.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

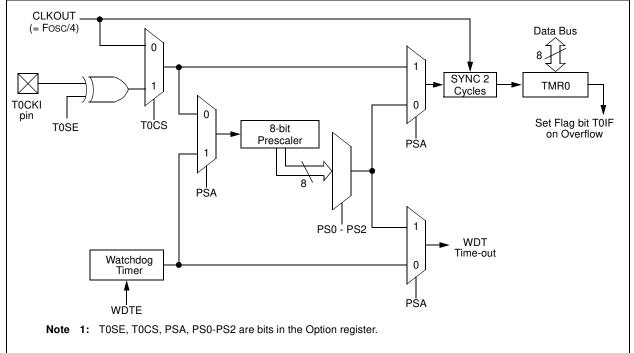
- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 4-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Note:		information							
	module is a	module is available in the PICmicro [™] Mid-							
	Range Reference Manual (DS33023).								

4.1 Timer0 Operation

Timer mode is selected by clearing the T0CS bit (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.


Counter mode is selected by setting the T0CS bit (OPTION_REG<5>). In this mode, the Timer0 module will increment either on every rising or falling edge of pin GP2/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION_REG<4>). Clearing the T0SE bit selects the rising edge.

Note: Counter mode has specific external clock requirements. Additional information on these requirements is available in the *PICmicro™ Mid-Range Reference Manual* (DS33023).

4.2 Timer0 Interrupt

A Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module Interrupt Service Routine before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from SLEEP since the timer is shut-off during SLEEP.

