imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

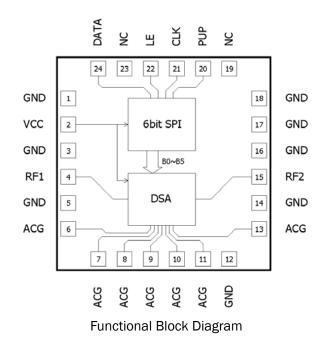
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

rfmd.com

SERIAL CONTROLLED DIGITAL STEP ATTENUATOR 50MHz to 4000MHz, 6-BIT, 0.5dB

Package: MCM, 24-Pin, 4.2mm x 4.2mm


RFMD IN RFSA2624

Features

- Frequency Range 50MHz to 4000MHz
- 6-Bits, 31.5dB Range, 0.5dB Step
- High Linearity, OIP3 >48dBm through over 700MHz to 2700MHz
- SV and 5V Logic Compatible
- Serial-to-Parallel Controller
- Serial Programming Interface
- Power-up Programming Modes
- On-chip ESD Protection >500V HBM
- Single Supply, 3V to 5V Operation
- Footprint compatible with most 24-pin, 4mm QFNs

Applications

- Transceiver IF Applications
- Cellular, PCS, GSM, UMTS, LTE, WiMax/WiFi
- Wireless Data, Satellite Terminals
- Test Equipment

Product Description

RFMD's RFSA2624 is a 6-bit digital step attenuator (DSA) that features high linearity over the entire 31.5dB gain control range with excellent step accuracy in 0.5dB steps. The RFSA2624 is programmed via a serial mode control interface that is both 3V and 5V compatible. The RFSA2624 also offers a rugged Class 1B HBM ESD rating via on-chip ESD circuitry. The MCM package is footprint compatible with most 24-pin, 4mm, QFN packages.

Ordering Information

RFSA2624SR7" Reel with 100 piecesRFSA2624SQSample bag with 25 piecesRFSA2624TR77" Reel with 750 piecesRFSA2624TR1313" Reel with 2500 piecesRFSA2624PCK-41050MHz to 4000MHz PCBA with 5-piece sample bag

Optimum Technology Matching [®] Applied					
🗌 GaAs HBT	□ SiGe BiCMOS	🗹 GaAs pHEMT	🗌 GaN HEMT		
GaAs MESFET	Si BiCMOS	Si CMOS	BiFET HBT		
🗌 InGaP HBT	SiGe HBT	🗌 Si BJT			

RF MICRO DEVICES®, RFMD®, optimum Technology Matching®, Enabling Wireless Connectivity¹⁰, PowerStarte, PowerStarte, Poularis¹⁰ tradinational and utilimateBlue¹⁰ are trademarks of RFMD. LLC. BLUETOOTH is a trade mark owned his Builenoth Sit. Co., LLSA and licesred for size for BEML, All other conte names trademarks and redistered trademarks and redistered trademarks. Sci 701. 2 Reflex Devices Lice.

7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.

Absolute Maximum Ratings

0				
Parameter	Rating	Unit		
Supply Voltage	+5.5	V		
DC Supply Current	15	mA		
Power Dissipation	83	mW		
Max RF Input Power	27	dBm		
Operating Temperature (T _{CASE})	-40 to +85	°C		
Storage Temperature	-40 to +150	°C		
Junction Temperature	150	°C		
ESD Rating (HBM)	Class 1B			
Moisture Sensitivity Level	MSL3			

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions is not implied.

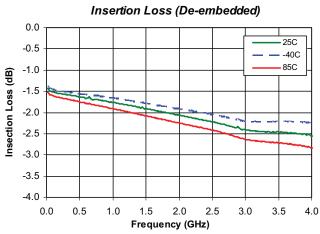
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

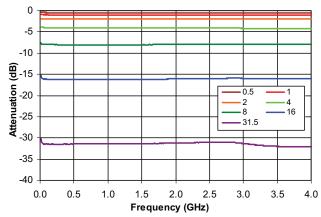
Devementer		Specification		Unit	Condition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
Frequency Range	50		4000	MHz		
Insertion Loss		1.5		dB	150MHz, 0dB attenuation	
		1.7	1.9	dB	850MHz, 0dB attenuation	
		2.3		dB	2700MHz, 0dB attenuation	
		2.5	2.8	dB	3800MHz, 0dB attenuation	
Gain Control Range		31.5		dB	0.5dB step size	
Step Accuracy	±(0.15 +	5.0% attenuatio	n setting)	dB		
Input IP3 (0 - 15.5dB states)		48		dBm	700MHz to 2700MHz, all states	
Input P1dB		27		dBm	700MHz to 2700MHz, all states	
Return Loss		13		dB	700MHz to 2700MHz, all states	
Control Interface		6		bit	Serial Interface	
Settling Time		250		nS	t _{RISE} , t _{FALL} (10%/90% RF)	
Switching Speed		250		nS	t _{ON} , t _{OFF} (50% CTL to 10%/90% RF)	
Supply Voltage (V _{DD})	4.75	5.0	5.25	V		
Supply Current		5		mA		
Control Voltage (V _{CTL})	0		0.8	V	Low	
	2.0		V _{DD}	V	High	

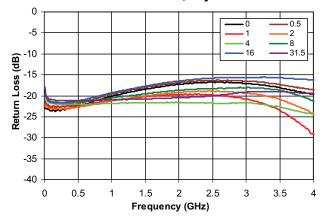
Notes:

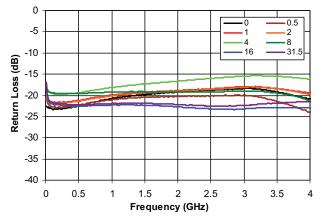
1. V_{DD} = 5V, V_{CTL} = 3V, T = 25 °C

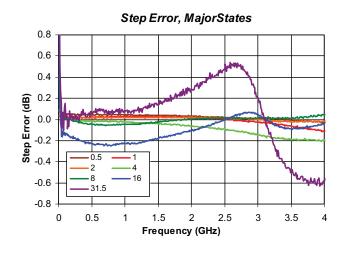

2. Broadband Application Circuit (with ACG capacitors)

3. IIP3 measured with P_{IN} = +10dBm/tone, 1MHz spacing

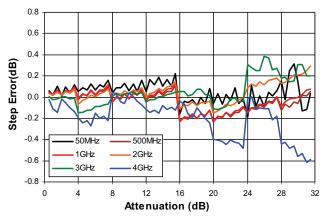





Normalized Attenuation, MajorStates

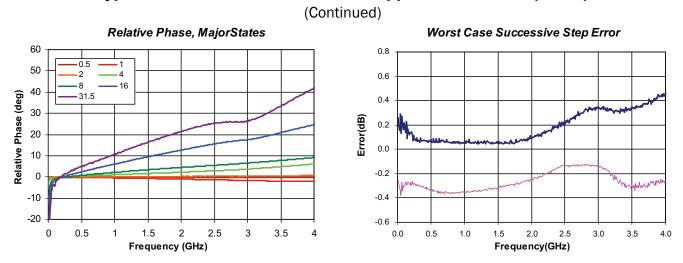


Return Loss of RF1, MajorStates



Return Loss of RF2, MajorStates

Step Error vs. Attenuation State



Frequency (GHz)

Typical Performance - Broadband Application Circuit (25 °C)

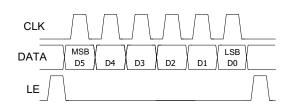
DS110706

Truth Table

	Control Bit					Relative Gain
C16	C8	C4	C2	C1	C0.5	Setting
1	1	1	1	1	1	Max gain
1	1	1	1	1	0	-0.5dB
1	1	1	1	0	1	-1dB
1	1	1	0	1	1	-2dB
1	1	0	1	1	1	-4dB
1	0	1	1	1	1	-8dB
0	1	1	1	1	1	-16dB
0	0	0	0	0	0	-31.5dB

Note: C 0.5 = D0, C1 = D1, ... C16 = D5 (for the purpose of the example below)

SPI Timing Diagram


Serial Port Interface

t10

CLK t1 t2 t3 t4 t4 t4 t5 t8 t8 t8 t8 t8 t8 t7 t7 LE t7 t7 t9 t9

t6

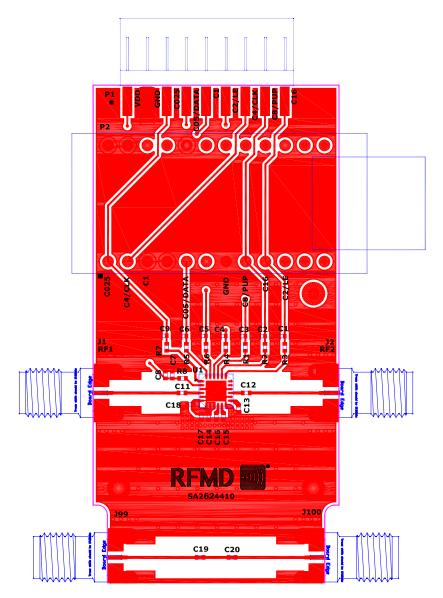
Programming example – 6-bit

SPI Timing Diagram Specifications

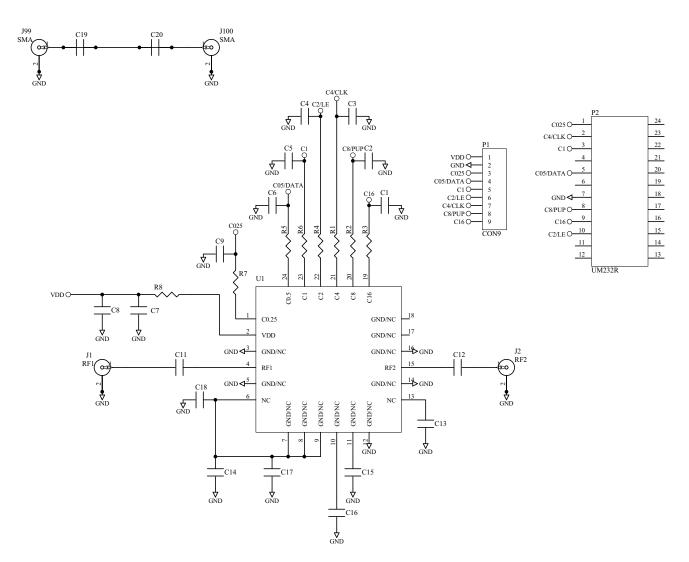
Parameter	Limit	Unit	Comment
t1	25	MHz max	CLK Frequency
t2	20	ns min	CLK High
t3	20	ns min	CLK Low
t4	5	ns min	DATA to CLK Setup Time
t5	5	ns min	DATA to CLK Hold Time
t6	30	ns min	Data Valid
t7	5	ns min	LE to CLK Setup Time
t8	5	ns min	CLK to LE Setup Time
t9	10	ns min	LE Pulse Width
t10	20	ns min	Output Set

LOGIC Voltage Levels		
State Logic		
Low	0V to 0.8V	
High	2.0V to 5.0V	

Pin Names and Description

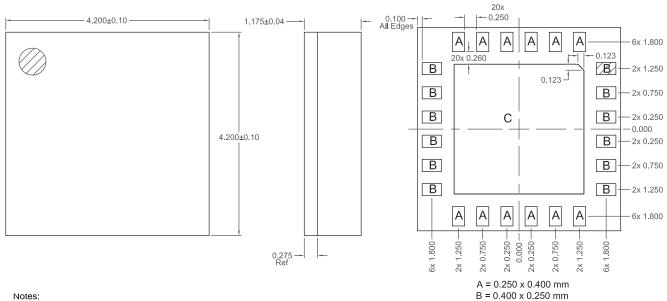

Pin	Name	Description
1	GND	DC and RF Ground.
2	VDD	Power supply.
3	GND	DC and RF Ground.
4	RF1	RF port. External DC block required.
5	GND	DC and RF Ground.
6	ACG	AC ground for operation below 500MHz; leave unconnected above 500MHz.
7	ACG	AC ground for operation below 500MHz; leave unconnected above 500MHz.
8	ACG	AC ground for operation below 500MHz; leave unconnected above 500MHz.
9	ACG	AC ground for operation below 500MHz; leave unconnected above 500MHz.
10	ACG	AC ground for operation below 500MHz; leave unconnected above 500MHz.
11	ACG	AC ground for operation below 500MHz; leave unconnected above 500MHz.
12	GND	DC and RF Ground.
13	ACG	AC ground for operation below 500MHz; leave unconnected above 500MHz.
14	GND	DC and RF Ground.
15	RF2	RF port. External DC block required.
16	GND	DC and RF Ground.
17	GND	DC and RF Ground.
18	GND	DC and RF Ground.
19	NC	No internal connection. EVB can be ground or no connect.
20	PUP	Power-up Programming pin. Low=max attenuation (31.5dB) at power-up, High=min attenuation (0dB) at power-up.
21	CLK	Serial Clock.
22	LE	Latch Enable.
23	NC	No internal connection. EVB can be ground or no connect.
24	DATA	Serial Data.
EPAD	GND	DC and RF ground. Must be soldered to EVB ground plane over a bed of vias for thermal and RF performance.

Power-up Programming Truth Table			
PUP Attenuator Setting			
Low	Attenuation at max, 31.5dB		
High	Attenuation at min, OdB		



Evaluation Board Assembly Drawing

Evaluation Board Schematic



Evaluation Board Bill of Materials (BOM)

Description	Reference Designator	Manufacturer	Manufacturer's P/N
RFSA2714 Evaulation Board	PCB itself	Dynamic Details (DDI) Toronto	SA2714410(A)
6-Bit, Serial, 0.5dB Step Attenuator	U1	RFMD	RFSA2624SB
CAP, 680pF, 10%, 50V, X7R, 0402	C13, C15-C17	Murata Electronics N. America	GRM155R71H681KA01E
CAP, 1000pF, 10%, 50V, X7R, 0402	C7	Taiyo Yuden (USA), Inc.	RM UMK105BJ102KV-F
CAP, 0.1µF, 10%, 10V, X5R, 0402	C11-C12	Taiyo Yuden (USA), Inc.	RM LMK105BJ104KV
RES, 0Ω, 0402	R1-R2, R4-R5, R8	Kamaya, Inc	RMC1/16SJPTH
CONN, SMA, END LNCH, UNIV, HYB MNT, FLT	J1-J2, J99-J100	Molex	SD-73251-4000
CONN, HDR, ST, PLRZD, 9-PIN	P1	ITW Pancon	MPSS100-9-C
CONN, SKT, 24-PIN DIP, .600", T/H	P2	Aries Electronics Inc.	24-6518-10
MOD, USB TO SERIAL UART, SSOP-28	M1 (See Note Below)	Future Technology Devices Int'l	UM232R
DNP	C1-C6, C8-C9, C14, C18-C20	NA	NA
DNP	R3, R6, R8	NA	NA

Note: M1 is to be mounted into P2 with respect to the Pin 1 alignment of M1 and P2

Package Drawing

1. Shaded area represents Pin 1 location

C = 2.680 x 2.680 mm