

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

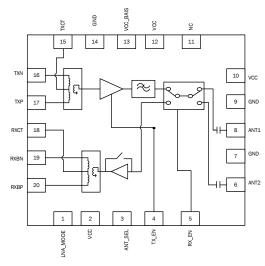
3.0V TO 4.2V, 2.4GHz FRONT END MODULE

RF6525 KL6252 KLWD M

Package Style: QFN, 20-Pin, 3.5 mmx3.5 mmx0.5 mm

Features

■ TX Output Power: 22dBm


RX Gain: 11.5dBRX NF: 2.5dB

 Integrated RF Front End Module with TX/RX balun, PA, Filter, LNA with Bypass Mode and DP2T Switch.

 Dual Differential Transceiver Interface.

Applications

- ZigBee® 802.15.4 Based Systems for Remote Monitoring and Control
- 2.4GHz ISM Band Applications
- Smart Meters for Energy Management

Functional Block Diagram

Product Description

The RF6525 integrates a complete solution in a single Front End Module (FEM) for ZigBee® applications in the 2.4 GHz to 2.5 GHz band. This FEM integrates the PA plus harmonic filter in the transmit path and the LNA with bypass mode in the receive side. It also integrates a diversity switch and provides balanced input and output signals for both the TX and RX paths respectively.

The RF6525 FEM is ideal for ZigBee® systems operating with a minimum output power of 20dBm and high efficiency requirements. On the receive path, the RX Chain provides 11.5dB of typical gain with only 7 mA of current and excellent NF of 2.5dB. This FEM meets or exceeds the system requirements for ZigBee® applications operating in the 2.4GHz to 2.5GHz band. The device is provided in a 3.5mm x 3.5mm x 0.5mm, 20-pin QFN package.

Ordering Information

RF6525SQ Standard 25 piece bag RF6525SR Standard 100 piece reel RF6525TR13 Standard 2500 piece reel

RF6525PCK-410 Fully assembled evaluation board with 5 loose pieces

Optimum Technology Watching® Applied						
☐ GaAs HBT	☐ SiGe BiCMOS	▼ GaAs pHEMT	☐ GaN HEMT			
☐_GaAs MESFET	☐ Si BiCMOS	☐ Si CMOS	☐ BiFET HBT			
✓ InGaP HBT	☐ SiGe HBT	☐ Si BJT	☐ LDMOS			

RF6525

Absolute Maximum Ratings

Parameter	Rating	Unit
DC Supply Voltage	5	V
Operating Case Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C
ESD Human Body Model RF Pins	1000	V
ESD Human Body Model All Other Pins	500	V
ESD Charge Device Model All Pins	500	V
Moisture Sensitivity Level	MSL 2	
Maximum Input Power to PA and LNA (No Damage in High Gain Mode)	+5	dBm

Caution! ESD sensitive device.

Caution! ESD sensitive device.

Exceeding any neor a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied. The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, inc. ("RFMD") for its use, nor for any infringement of patients, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patient or patient rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimory trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

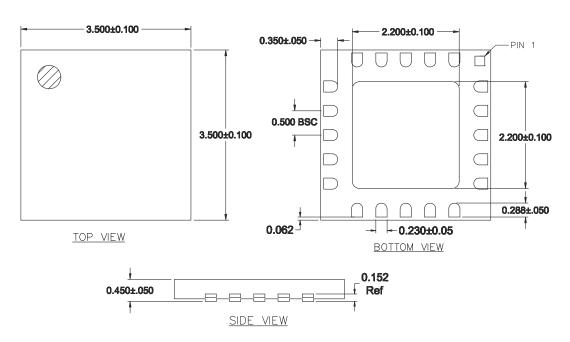
Parameter	Specification			Unit	Condition	
Parameter	Min.	Тур.	Max.	Ullit	Condition	
Overall					Specifications must be met across supply voltage, control voltage, and temperature ranges unless otherwise noted. Typical conditions: T=25 $^{\circ}$ C, V_{CC} =3.6 V, TX_EN=High	
Operating Frequency Range	2400		2483	MHz		
Operating Voltage (V _{CC})	3.0	3.6	4.2	V		
Leakage Current		0.5		uA	V _{CC} =3.6V, RF=0FF, TX_EN=Low, RX_EN=Low. LNA_EN, ANT_SEL, and LNA Mode=Low.	
Transmit Parameters						
Frequency	2400		2483	MHz		
Input Return Loss		-13	-9.6	dB	Over all conditions for both Antenna 1 and Antenna 2	
Amplitude Imbalance	-1		1	dB		
Phase Imbalance	-15		15	deg		
Output Return Loss		-14	-9.6	dB	Over all conditions for both Antenna 1 and Antenna 2	
Gain	25	28		dB	At rated power and nominal conditions	
Gain Variation	-1.5		+1.5	dB	Over temperature	
Gain Flatness	-1		+1	dB	Over frequencies and voltage	
Rated Output Power	20	22		dBm		
		19		dBm	V _{CC} =2.6V, V _{CC} _Bias=3.0V	
Supply Current		200	230	mA	P ₀ =22dBm 802.15.4 OQPSK. Typical Conditions.	
Supply Current		175	205	mA	P ₀ =20dBm 802.15.4 OQPSK.	
Thermal Resistance		53		°C/W	V _{CC} = 3.6V, P _{OUT} = 22dBm, T _{REF} = 85°C	
2nd Harmonic Level		-45	-42	dBm/MHz	Measured using standard 802.15.4 OQPSK modulation signal at P _{OUT} = 20 dBm over temperature, frequency, and voltage	
3rd Harmonic Level		-45	-42	dBm/MHz	Measured using standard 802.15.4 OQPSK modulation signal at P _{OUT} =20dBm over temperature, frequency, and voltage	
VSWR Stability and Load Mismatch Susceptibility	4:1				No spurs above -45 dBm	
VSWR No Damage	8:1					

Parameter	- ·	Specification			0 - 100 - 1	
cont. Gain Settling Time 1 2 US Carcent Sourced through TXCT Pin 18.0 mA Carcent Sourced through TXCT Pin to TX	Parameter	Min.		Max.	Unit	Condition
Gain Settling Time	Transmit Parameters,					
Current Sourced through Noting Properties	cont.					
Notings Proprior TIXCP Print to TXP/TXN Notice Parameters (LNA Mode) Notice Prequency 2400 2483 MHz Notice Prequency 2400 2483 MHz Notice Prequency 25 3.5 dB From antenna to RX pin (entire RX path). (All conditions) Notice Prigure 2.5 3.5 dB From antenna to RX pin (entire RX path). (All conditions) Notice Prigure 2.5 3.5 dB From antenna to RX pin (entire RX path). (All conditions) Notice Prigure 2.5 3.5 dB From antenna to RX pin (entire RX path). (All conditions) Notice Prigure 2.5 3.5 dB Prior antenna to RX pin (entire RX path). (All conditions) Notice Prigure 2.5 dB Prior antenna to RX pin (entire RX path). (All conditions) Notice Prigure 2.5 dB Prior antenna to RX pin (entire RX path). (All conditions) Notice Prigure 2.5 dB Prior antenna to RX pin (entire RX path). (All conditions) Notice Prigure 2.5 dB Prior antenna to RX pin (entire RX path). (All conditions) Notice Prigure 2.5 dB Differential RX Port Differential RX Po	Gain Settling Time		1	2	uS	
Receive Parameters (LINA Mode) Prequency 2400 2483 MHz				18.0	mA	
CLNA Mode 2400 2483 MHz From antenna to RX pin (entire RX path). (All conditions.) 14				0.1	V	
Prequency	Receive Parameters					
Sain	(LNA Mode)					
Noise Figure 2.5 3.5 dB	Frequency	2400		2483	MHz	
Current 8 12 mA LNA + Switches Input IP3 5 10 dBm At nominal conditions Gain Flatness -0.7 0.7 dB over frequency Input Return Loss 10 dB over frequency Output Return Loss 8 dB Differential RX Port Phase Imbalance -15 15 deg On 180 degrees typical, differential RX Port Phase Imbalance -15 15 deg On 180 degrees typical, differential RX Port Current Sourced through RXCT Pin to RXP/RXN 0.05 0.1 V SPBSS Mode Frequency 2400 2483 MHz Insertion Loss 5 7 dB Entire RX path Noise Figure 5 dB Entire RX path Current 5 dB Entire RX path Urrent 5 uA ANT1 IBP3 18 dBm Nominal Gain Flatness -0.1 dB over frequency Input Return	Gain	8	11.5	14	dB	. , , , , ,
Input IP3	Noise Figure		2.5	3.5	dB	From antenna to RX pin (entire RX path).
Gain Flatness -0.7	Current		8	12	mA	LNA + Switches
Input Return Loss	Input IP3	5	10		dBm	At nominal conditions
Output Return Loss	Gain Flatness	-0.7		0.7	dB	over frequency
Amplitude Imbalance	Input Return Loss		10		dB	
Phase Imbalance	Output Return Loss			8	dB	
Current Sourced through RXCT Pin to RXP/RXN	Amplitude Imbalance	-1		1	dB	Differential RX Port
Noting N	Phase Imbalance	-15		15	deg	On 180 degrees typical, differential RX Port
Section Sect				1	mA	
Frequency			0.05	0.1	V	
Insertion Loss	ByPass Mode					
Noise Figure	Frequency	2400		2483	MHz	
Current	Insertion Loss		5	7	dB	Entire RX path
18	Noise Figure		5		dB	Entire RX path
IIP3	Current		5		uA	ANT1
Gain Flatness -0.1 0.1 dB over frequency			50		uA	ANT2
Input Return Loss Output Return Loss 9.5 8 dB Amplitude Imbalance -1 Phase Imbalance -15 0.05 Output Return Loss 0.05 On 180 degrees typical, differential RX Port That is a surface of through RXCT Pin Voltage Drop from RXCT Pin O.05 O.1 V Antenna Switch RF-to-Control Isolation To 20 Description of the surface	IIP3		18		dBm	Nominal
Output Return Loss Amplitude Imbalance -1 Definition of the proof of	Gain Flatness	-0.1		0.1	dB	over frequency
Amplitude Imbalance -1	Input Return Loss		15	12	dB	
Phase Imbalance -15 deg On 180 degrees typical, differential RX Port mA Voltage Drop from RXCT Pin to RXP/RXN Antenna Switch RF-to-Control Isolation 17 20 dB Measured at any control pin while in TX or RX mode. RF-to-ANT Isolation 17 20 dB Measured from Antenna to RX port while in Transmit mode. Measured from Antenna to TX port while in Receive mode. RF-to-RF Isolation 18 20 dB Measured from TX port to RX port while in receive or transmit modes. Switch Control Logic = HIGH =V _{CC} -0.3 =V _{CC} V All Logic I/O's	Output Return Loss		9.5	8	dB	
Current Sourced through RXCT Pin	Amplitude Imbalance	-1		1	dB	Differential RX Port
RXCT Pin Voltage Drop from RXCT Pin to RXP/RXN Antenna Switch RF-to-Control Isolation 17 20 dB Measured at any control pin while in TX or RX mode. RF-to-ANT Isolation 17 20 dB Measured from Antenna to RX port while in Transmit mode. Measured from Antenna to TX port while in Receive mode. RF-to-RF Isolation 18 20 dB Measured from TX port to RX port while in receive or transmit modes. Switch Control Logic = HIGH = V _{CC} -0.3 =V _{CC} V All Logic I/O's	Phase Imbalance	-15		15	deg	On 180 degrees typical, differential RX Port
to RXP/RXN Antenna Switch RF-to-Control Isolation SO BR-to-ANT Isolation BR-to-ANT Isolation TO BR-to-ANT Isolation BR-to-ANT Isolation BR-to-ANT Isolation BR-to-ANT Isolation BR-to-BR-to-Br-to				1	mA	
RF-to-Control Isolation 50 dB Measured at any control pin while in TX or RX mode. RF-to-ANT Isolation 17 20 dB Measured from Antenna to RX port while in Transmit mode. Measured from Antenna to TX port while in Receive mode. RF-to-RF Isolation 18 20 dB Measured from TX port to RX port while in receive or transmit modes. Switch Control Logic = HIGH = V _{CC} -0.3 = V _{CC} V All Logic I/O's			0.05	0.1	V	
RF-to-ANT Isolation 17 20 dB Measured from Antenna to RX port while in Transmit mode. Measured from Antenna to TX port while in Receive mode. RF-to-RF Isolation 18 20 dB Measured from TX port to RX port while in receive or transmit modes. Switch Control Logic = HIGH = V _{CC} -0.3 = V _{CC} V All Logic I/O's	Antenna Switch					
mode. Measured from Antenna to TX port while in Receive mode. RF-to-RF Isolation 18 20 dB Measured from TX port to RX port while in receive or transmit modes. Switch Control Logic = HIGH =V _{CC} -0.3 =V _{CC} V All Logic I/O's	RF-to-Control Isolation		50		dB	Measured at any control pin while in TX or RX mode.
switch Control Logic = HIGH = V _{CC} -0.3 = V _{CC} V All Logic I/O's	RF-to-ANT Isolation	17	20		dB	mode. Measured from Antenna to TX port while in
	RF-to-RF Isolation	18	20		dB	
Switch Control Logic = LOW 0.0 0.2 V All Logic I/O's	Switch Control Logic = HIGH	=V _{CC} -0.3		=V _{CC}	V	All Logic I/O's
	Switch Control Logic = LOW	0.0		0.2	V	All Logic I/O's

RF6525

rfmd.com

Switch Control Current. Logic HIGH	2	5	μА	All Logic I/O's
Switch Control Current. Logic LOW	0.1		μΑ	All Logic I/O's
Antenna Select Switch Speed		1	uS	ANT1 or ANT2 path, TX or RX mode



rfmd.com

Pin	Function	Description
1	LNA_MODE	Bypass enable pin. See logic table for operation.
2	VCC	Voltage Supply. An external 1uF capacitor might be needed for low frequency decoupling.
3	ANT_SEL	Control pin for Antenna select. See logic table for operation.
4	TX_EN	Enable voltage pin for the PA and Transmit switch. See logic table for operation.
5	RX_EN	Enable voltage pin for the LNA and Receive switch. See logic table for operation
6	ANT2	This is the common port (antenna). It is matched to 50Ω and DC-block is provided internally.
7	GND	Ground.
8	ANT1	This is the common port (antenna). It is matched to 50Ω and DC-block is provided internally
9	GND	Ground.
10	VCC	Voltage Supply. An external 1uF capacitor might be needed for low frequency decoupling
11	NC	No connect pin. Must be left floating.
12	VCC	Voltage Supply. An external 1uF capacitor might be needed for low frequency decoupling
13	VCC_BIAS	Voltage Supply. An external 1 uF capacitor might be needed for low frequency decoupling
14	GND	Ground.
15	TXCT	Center tap for passing thru DC voltage to TXN and TXP pins that connect to the TXVR SoIC.
16	TXN	100Ω single-ended, 200Ω differential.
17	TXP	100Ω single-ended, 200Ω differential.
18	RXCT	Center tap for passing thru DC voltage to RXBN and RXBP pins that connect to the TXVR SolC.
19	RXBN	100Ω single-ended, 200Ω differential.
20	RXBP	100Ω single-ended, 200Ω differential.

Package Drawing

RF6525 Biasing Instructions

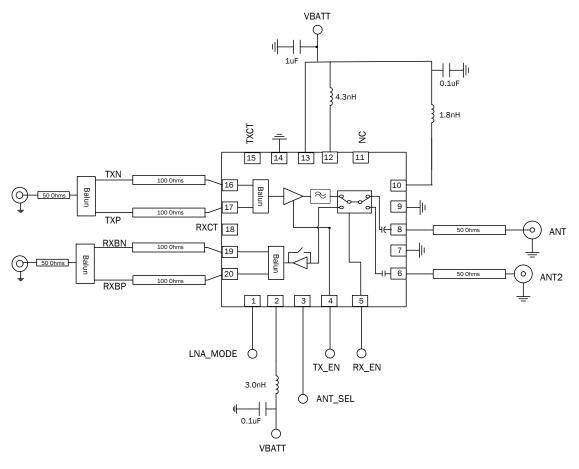
TX Mode

- With the RF source disabled, apply 3.3V to V_{CC} with other control set to 0V
- Set VTX=High, keeping VRX and LNA_MODE at OV
- Apply OV to ANT_SEL to select the ANT1 port, or 2.8V to select the ANT2 port
- V_{CC} current should rise to 70mA to 80mA quiescent current
- Enable the RF source; V_{CC} current should rise to a maximum of 200 mA depending on output power

RX LNA Mode

- \bullet With the RF source disables, apply 3.3 V to V_{CC} with other controls set to 0 V
- Set VRX=High to RX Enable and LNA_MODE, keeping TX at OV
- Apply OV to ANT_SEL to select the ANT1 port, or 2.8V to select the ANT2 port
- V_{CC} current should rise to 7 mA to 8 mA
- Enable the RF source; V_{CC} current may increase a few mA depending on output power

RX Bypass Mode


- \bullet With the RF source disabled, apply 3.3V to V_{CC} with other controls set to 0V
- Set VRX=High, keeping TX and LNA_MODE at OV
- · Apply OV to ANT_SEL to select the ANT1 port, or 2.8V to select the ANT2 port
- V_{CC} current should be in the uA range
- Enable the RF source; V_{CC} current should remain in the uA range

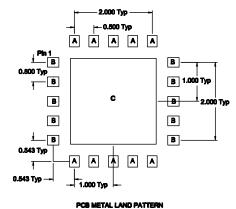
	Logic Table				
Mode	TX_EN	RX_EN	LNA_MODE	ANT_SEL	
TX-ANT1	HIGH	LOW	LOW	LOW	
TX_ANT2	HIGH	LOW	LOW	HIGH	
RX-ANT1 LNA	LOW	HIGH	HIGH	LOW	
RX-ANT1 BYP	LOW	HIGH	LOW	LOW	
RX-ANT2LNA	LOW	HIGH	HIGH	HIGH	
RX-ANT2 BYP	LOW	HIGH	LOW	HIGH	
All OFF	LOW	LOW	LOW	LOW	

Operating currents at nominal conditions

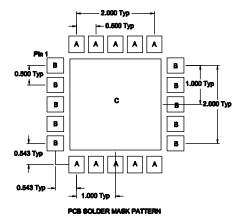
Evaluation Board Schematic

PCB Design Requirements

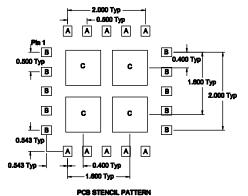
PCB Surface Finish


The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is 3μ inch to 8μ inch gold over 180μ inch nickel.

PCB Land Pattern Recommendation

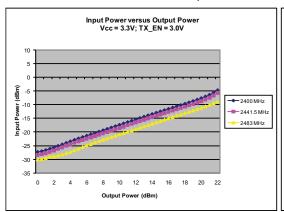

PCB land patterns for RFMD components are based on IPC-7351 standards and RFMD empirical data. The pad pattern shown has been developed and tested for optimized assembly at RFMD. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.

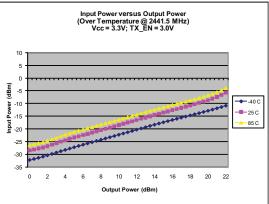
PCB Metal Land and Solder Mask Pattern

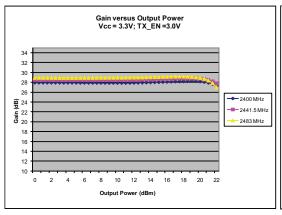

A = 0.250 x 0.290 (mm) Typ Rounded Rectangle 50% B = 0.290 x 0.250 (mm) Typ Rounded Rectangle 50% C = 0.000 (mm) Sp. Rounded Rectangle 50%

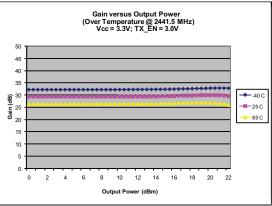
A = 0.390 x 0.430 (mm) Typ Rounded Rectangle 50% B = 0.430 x 0.390 (mm) Typ Rounded Rectangle 50% C = 2.340 (mm) Sp Rounded Rectangle 5%

A = 0.225 \times 0.281 (mm) Typ Rounded Rectangle 10% B = 0.281 \times 0.225 (mm) Typ Rounded Rectangle 10%

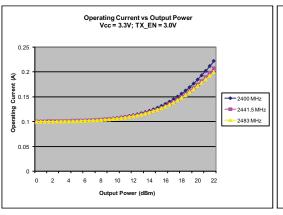


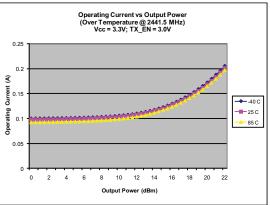

Thermal vias for center slug "C" should be incorporated into the PCB design. The number and size of thermal vias will depend on the application, the power dissipation, and this electrical requirements. Example of the number and size of vias can be found on the RFMD evaluation board layout.

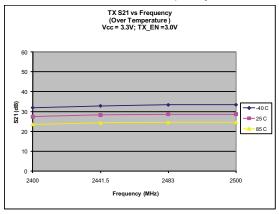

RF6525 2.4 GHz Front End Module


Input Power versus Output Power

Gain versus Output Power






RF6525 2.4 GHz Front End Module

Operating Current versus Output Power

TX S21 versus Frequency

