

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Reference Specification

200°C Operation Leaded MLCC for Automotive with AEC-Q200 RHS Series

Product specifications in this catalog are as of Jan. 2018, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char. : C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. Fail-safe

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

1. Aircraft equipment 2. Aerospace equipment

3. Undersea equipment 4. Power plant control equipment

5. Medical equipment6. Transportation equipment (vehicles, trains, ships, etc.)7. Traffic signal equipment8. Disaster prevention / crime prevention equipment

9. Data-processing equipment exerting influence on public

10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. Soldering and Mounting

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to 200°C Operation Leaded MLCC RHS series in accordance with AEC-Q200 requirements used for Automotive Electronic equipment.

2. Rating

• Applied maximum temperature up to 200°C

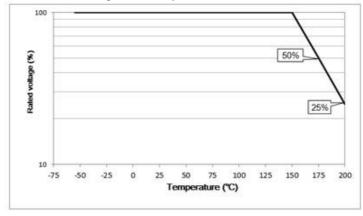
Note: Maximum accumulative time to 200°C is within 2000 hours.

• Part number configuration

ex.)	RHS	7G	2A	101	J	1	A2	H01	В
	Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Packing
		Characteristic	voltage		tolerance	code	code	specification code	style code

Series

Code	Content
RHS	Epoxy coated, 200°C max.


• Temperature characteristic

Code	Temp.	Temp. Range	Temp.	Standard	Operating
Char.		Temp. Hange	coeff.(ppm/°C)	Temp.	Temp. Range
			0+30/-72 (-55~25°C)		
7G	CCG	-55∼200°C	0±30 (25~125°C)	25°C	-55 ~ 200°C
			0+72/-30 (125~200°C)		

• Rated voltage

Code	Rated voltage
2A	DC100V

When the product temperature exceeds 150°C, please use this product within the voltage and temperature derated conditions in the figure below.

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 101.

$$10 \times 10^1 = 100 pF$$

• Capacitance tolerance

Code	Capacitance tolerance
J	+/-5%

• Dimension code

Code	Dimensions (LxW) mm max.
0	3.8 x 3.5
1	4.0 x 3.5

• Lead code

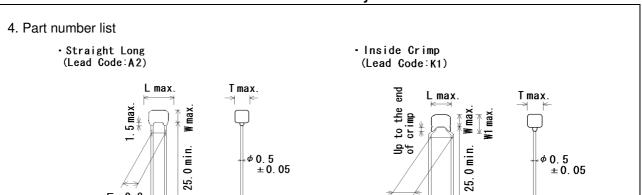
Code	Lead style	Lead spacing (mm)			
A2	Straight type	2.5+/-0.8			
DG Straight taping type		2.5+0.4/-0.2			
K1 Inside crimp type		5.0+/-0.8			
M2	Inside crimp taping type	5.0+0.6/-0.2			

Lead wire is solder coated CP wire.

• Individual specification code Murata's control code Please refer to [Part number list].

• Packing style code

Code	Packing style
Α	Taping type of Ammo
В	Bulk type

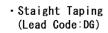

3. Marking

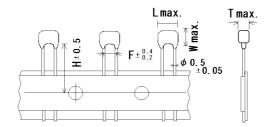
Capacitance
Capacita : Letter code : 4 (CCG char.)

: 3 digit numbers

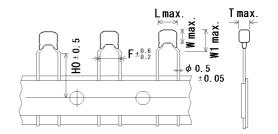
Capacitance tolerance: Code

(Ex.) Rated voltage 100V Dimension code 101J 0,1




F±0.8

 $F\pm 0.\ 8$


-	1	n	i÷	m	r
		11	11	111	ı

Overtone an Deut Niverbau	Murata Part Number	T.C.	DC Rated	ated	Сар.		Size	Pack				
Customer Part Number	ividiata i art ivdilibei		Volt. (V)	Сар.	tol.	L	W	W1	F	Т	Lead Code	(pc
	RHS7G2A101J0A2H01B	CCG	100	100pF	±5%	3.8	3.5	-	2.5	2.5	0A2	50
	RHS7G2A121J0A2H01B	CCG	100	120pF	±5%	3.8	3.5	-	2.5	2.5	0A2	50
	RHS7G2A151J0A2H01B	CCG	100	150pF	±5%	3.8	3.5	-	2.5	2.5	0A2	50
	RHS7G2A181J0A2H01B	CCG	100	180pF	±5%	3.8	3.5	-	2.5	2.5	0A2	50
	RHS7G2A221J0A2H01B	CCG	100	220pF	±5%	3.8	3.5	-	2.5	2.5	0A2	50
	RHS7G2A271J0A2H01B	CCG	100	270pF	±5%	3.8	3.5	-	2.5	2.5	0A2	5
	RHS7G2A331J0A2H01B	CCG	100	330pF	±5%	3.8	3.5	-	2.5	2.5	0A2	5
	RHS7G2A391J0A2H01B	CCG	100	390pF	±5%	3.8	3.5	-	2.5	2.5	0A2	5
	RHS7G2A471J0A2H01B	CCG	100	470pF	±5%	3.8	3.5	-	2.5	2.5	0A2	5
	RHS7G2A561J0A2H01B	CCG	100	560pF	±5%	3.8	3.5	-	2.5	2.5	0A2	5
	RHS7G2A681J0A2H01B	CCG	100	680pF	±5%	3.8	3.5	-	2.5	2.5	0A2	5
	RHS7G2A821J0A2H01B	CCG	100	820pF	±5%	3.8	3.5	-	2.5	2.5	0A2	5
	RHS7G2A102J0A2H01B	CCG	100	1000pF	±5%	3.8	3.5	-	2.5	2.5	0A2	5
	RHS7G2A122J0A2H01B	CCG	100	1200pF	±5%	3.8	3.5	-	2.5	2.5	0A2	5
	RHS7G2A152J0A2H01B	CCG	100	1500pF	±5%	3.8	3.5	-	2.5	2.5	0A2	5
	RHS7G2A182J1A2H01B	CCG	100	1800pF	±5%	4.0	3.5	-	2.5	2.5	1A2	5
	RHS7G2A222J1A2H01B	CCG	100	2200pF	±5%	4.0	3.5	-	2.5	2.5	1A2	5
	RHS7G2A272J1A2H01B	CCG	100	2700pF	±5%	4.0	3.5	-	2.5	2.5	1A2	5
	RHS7G2A332J1A2H01B	CCG	100	3300pF	±5%	4.0	3.5	-	2.5	2.5	1A2	5
	RHS7G2A101J0K1H01B	CCG	100	100pF	±5%	3.8	3.5	6.0	5.0	2.5	0K1	5
	RHS7G2A121J0K1H01B	CCG	100	120pF	±5%	3.8	3.5	6.0	5.0	2.5	0K1	5
	RHS7G2A151J0K1H01B	CCG	100	150pF	±5%	3.8	3.5	6.0	5.0	2.5	0K1	5
	RHS7G2A181J0K1H01B	CCG	100	180pF	±5%	3.8	3.5	6.0	5.0	2.5	0K1	5
	RHS7G2A221J0K1H01B	CCG	100	220pF	±5%	3.8	3.5	6.0	5.0	2.5	0K1	5
	RHS7G2A271J0K1H01B	CCG	100	270pF	±5%	3.8	3.5	6.0	5.0	2.5	0K1	5
	RHS7G2A331J0K1H01B	CCG	100	330pF	±5%	3.8	3.5	6.0	5.0	2.5	0K1	5
	RHS7G2A391J0K1H01B	CCG	100	390pF	±5%	3.8	3.5	6.0	5.0	2.5	0K1	5
	RHS7G2A471J0K1H01B	CCG	100	470pF	±5%	3.8	3.5	6.0	5.0	2.5	0K1	5
	RHS7G2A561J0K1H01B	CCG	100	560pF	±5%	3.8	3.5	6.0	5.0	2.5	0K1	5
	RHS7G2A681J0K1H01B	CCG	100	680pF	±5%	3.8	3.5	6.0	5.0	2.5	0K1	5
	RHS7G2A821J0K1H01B	CCG	100	820pF	±5%	3.8	3.5	6.0	5.0	2.5	0K1	5
	RHS7G2A102J0K1H01B	CCG	100	1000pF	±5%	3.8	3.5	6.0	5.0	2.5	0K1	5
	RHS7G2A122J0K1H01B	CCG	100	1200pF	±5%	3.8	3.5	6.0	5.0	2.5	0K1	5
	RHS7G2A152J0K1H01B	CCG	100	1500pF	±5%	3.8	3.5	6.0		2.5		5
	RHS7G2A182J1K1H01B	CCG	100	1800pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RHS7G2A222J1K1H01B	CCG	100	2200pF	±5%	4.0	3.5	5.0		2.5		5
	RHS7G2A272J1K1H01B	CCG	100	2700pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RHS7G2A332J1K1H01B	CCG	100	3300pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	5

Inside Crimp Taping (Lead Code: M2)

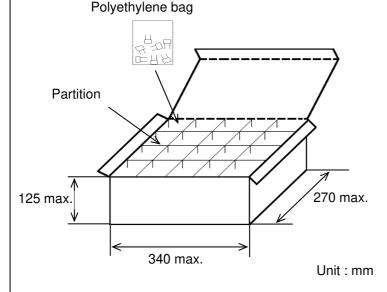
	1												
0	Marrata David Namahan	Τ.0	DC Rated	0		Dimension (mm) Size Pa							
Customer Part Number	Murata Part Number	T.C.	volt. (V)	Cap.	Cap. tol.	٦	W	W1	F	Т	H/H0		
	RHS7G2A101J0DGH01A	CCG	100	100pF	±5%	3.8	3.5	-	2.5	2.5	20.0	0DG	2000
	RHS7G2A121J0DGH01A	CCG	100	120pF	±5%	3.8	3.5	-	2.5	2.5	20.0	0DG	2000
	RHS7G2A151J0DGH01A	CCG	100	150pF	±5%	3.8	3.5	-	2.5	2.5	20.0	0DG	2000
	RHS7G2A181J0DGH01A	CCG	100	180pF	±5%	3.8	3.5	-	2.5	2.5	20.0	0DG	2000
	RHS7G2A221J0DGH01A	CCG	100	220pF	±5%	3.8	3.5	-	2.5	2.5	20.0	0DG	2000
	RHS7G2A271J0DGH01A	CCG	100	270pF	±5%	3.8	3.5	-	2.5	2.5	20.0	0DG	2000
	RHS7G2A331J0DGH01A	CCG	100	330pF	±5%	3.8	3.5	-	2.5	2.5	20.0	0DG	2000
	RHS7G2A391J0DGH01A	CCG	100	390pF	±5%	3.8	3.5	-	2.5	2.5	20.0	0DG	2000
	RHS7G2A471J0DGH01A	CCG	100	470pF	±5%	3.8	3.5	-	2.5	2.5	20.0	0DG	2000
	RHS7G2A561J0DGH01A	CCG	100	560pF	±5%	3.8	3.5	-	2.5	2.5	20.0	0DG	2000
	RHS7G2A681J0DGH01A	CCG	100	680pF	±5%	3.8	3.5	-	2.5	2.5	20.0	0DG	2000
	RHS7G2A821J0DGH01A	CCG	100	820pF	±5%	3.8	3.5	-	2.5	2.5	20.0	0DG	2000
	RHS7G2A102J0DGH01A	CCG	100	1000pF	±5%	3.8	3.5	-	2.5	2.5	20.0	0DG	2000
	RHS7G2A122J0DGH01A	CCG	100	1200pF	±5%	3.8	3.5	_	2.5	2.5	20.0	0DG	2000
	RHS7G2A152J0DGH01A	CCG	100	1500pF	±5%	3.8	3.5	-	2.5	2.5	20.0	0DG	2000
	RHS7G2A182J1DGH01A	CCG	100	1800pF	±5%	4.0	3.5	-	2.5	2.5	20.0	1DG	200
	RHS7G2A222J1DGH01A	CCG	100	2200pF	±5%	4.0	3.5	-	2.5	2.5	20.0	1DG	2000
	RHS7G2A272J1DGH01A	CCG	100	2700pF	±5%	4.0	3.5	-	2.5	2.5	20.0	1DG	2000
	RHS7G2A332J1DGH01A	CCG	100	3300pF	±5%	4.0	3.5	-	2.5	2.5	20.0	1DG	200
	RHS7G2A101J0M2H01A	CCG	100	100pF	±5%	3.8	3.5	6.0	5.0	2.5	20.0	0M2	200
	RHS7G2A121J0M2H01A	CCG	100	120pF	±5%	3.8	3.5	6.0	5.0	2.5	20.0	0M2	200
	RHS7G2A151J0M2H01A	CCG	100	150pF	±5%	3.8	3.5	6.0	5.0	2.5	20.0	0M2	200
	RHS7G2A181J0M2H01A	CCG	100	180pF	±5%	3.8	3.5	6.0	5.0	2.5	20.0	0M2	200
	RHS7G2A221J0M2H01A	CCG	100	220pF	±5%	3.8	3.5	6.0	5.0	2.5	20.0	0M2	200
	RHS7G2A271J0M2H01A	CCG	100	270pF	±5%	3.8	3.5	6.0	5.0	2.5	20.0	0M2	200
	RHS7G2A331J0M2H01A	CCG	100	330pF	±5%	3.8	3.5	6.0	5.0	2.5	20.0	0M2	200
	RHS7G2A391J0M2H01A	CCG	100	390pF	±5%	3.8	3.5	6.0	5.0	2.5	20.0	0M2	200
	RHS7G2A471J0M2H01A	CCG	100	470pF	±5%	3.8	3.5	6.0	5.0	2.5	20.0	0M2	200
	RHS7G2A561J0M2H01A	CCG	100	560pF	±5%	3.8	3.5	6.0	5.0	2.5	20.0	0M2	200
	RHS7G2A681J0M2H01A	CCG	100	680pF	±5%	3.8	3.5	6.0	5.0	2.5	20.0	0M2	200
	RHS7G2A821J0M2H01A	CCG	100	820pF	±5%	3.8	3.5	6.0	5.0	2.5	20.0	0M2	200
	RHS7G2A102J0M2H01A	CCG	100	1000pF	±5%	3.8	3.5	6.0	5.0	2.5	20.0	0M2	2000
	RHS7G2A122J0M2H01A	CCG	100	1200pF	±5%	3.8	3.5	6.0	5.0	2.5	20.0	0M2	2000
	RHS7G2A152J0M2H01A	CCG	100	1500pF		3.8	3.5	6.0	5.0	2.5	20.0	0M2	2000
	RHS7G2A182J1M2H01A	CCG	100	1800pF	±5%	4.0	3.5	5.0	5.0	2.5	20.0	1M2	2000
	RHS7G2A222J1M2H01A	CCG	100	2200pF	±5%	4.0	3.5	5.0	5.0	2.5	20.0	1M2	200
	RHS7G2A272J1M2H01A	CCG	100	2700pF	±5%	4.0	3.5	5.0	5.0	2.5	20.0	1M2	2000
	RHS7G2A332J1M2H01A	CCG	100	3300pF	±5%	4.0	3.5	5.0	5.0	2.5	20.0	1M2	2000

	$(Whichever is larger) $$Q \geq 350$$1,000MΩ min. $$No defects or abnormalities except color change of outer coating $$Within \pm 5\% \text{ or } \pm 0.5pF$ (Whichever is larger) $$Q \geq 350$$1,000MΩ min. $$No defects or abnormalities $$$	Sit the capacitor for 1,000±12h at 200±5°C. Let sit for 24±2h *room condition, then measure. Perform the 1,000 cycles according to the four heat treatmen listed in the following table. Let sit for 24±2 h at *room condition then measure. Step 1 2 3 4 Temp. (°C) -55+0/-3 Room 200+5/-0 Room Temp. Time (min.) 15±3 1 15±3 1 Apply the 24h heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Let sit for 24±2 h at *room condition, then measure. Temperature Humidity 80-98% Humidity 80-98% Humidity 80-98% Humidity 90-98% 90-98% 90-98% 90-98% 90-98% 90-98%				
Capacitance Change Q I.R. e Appearance Capacitance Change Q I.R. Appearance Capacitance Change Q I.R.	outer coating. Within $\pm 3\%$ or $\pm 0.3 pF$ (Whichever is larger) $Q \geq 350$ $1,000 M\Omega$ min. No defects or abnormalities except color change of outer coating Within $\pm 5\%$ or $\pm 0.5 pF$ (Whichever is larger) $Q \geq 350$ $1,000 M\Omega$ min. No defects or abnormalities Within $\pm 5\%$ or $\pm 0.5 pF$ (Whichever is larger) $Q \geq 350$	Perform the 1,000 cycles according to the four heat treatmen listed in the following table. Let sit for 24±2 h at *room condition then measure. Step				
I.R. e Appearance Capacitance Change Q I.R. Appearance Capacitance Change Q	1,000M Ω min. No defects or abnormalities except color change of outer coating Within ±5% or ±0.5pF (Whichever is larger) Q ≥ 350 1,000M Ω min. No defects or abnormalities Within ±5% or ± 0.5pF (Whichever is larger) Q ≥ 200	listed in the following table. Let sit for 24±2 h at *room condition then measure. Step				
e Appearance Capacitance Change Q I.R. Appearance Capacitance Change Q	No defects or abnormalities except color change of outer coating $ \begin{tabular}{ll} Within \pm 5\% & or \pm 0.5pF \\ (Whichever is larger) \\ Q \ge 350 \\ 1,000M\Omega & min. \\ \begin{tabular}{ll} No defects or abnormalities \\ Within \pm 5\% & or \pm 0.5pF \\ (Whichever is larger) \\ Q \ge 200 \\ \end{tabular} $	listed in the following table. Let sit for 24±2 h at *room condition then measure. Step				
Capacitance Change Q I.R. Appearance Capacitance Change Q	change of outer coating	listed in the following table. Let sit for 24±2 h at *room condition then measure. Step				
Q I.R. Appearance Capacitance Change Q	$Q \ge 350$ 1,000MΩ min. No defects or abnormalities Within ±5% or ± 0.5pF (Whichever is larger) $Q \ge 200$	Temp. (°C) -55+0/-3 Room 200+5/-0 Room Temp. Time (min.) 15±3 1 15±3 1 Apply the 24h heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Let sit for 24±2 h at *room condition, then measure. Temperature				
Appearance Capacitance Change Q	1,000M Ω min. No defects or abnormalities Within ±5% or ± 0.5pF (Whichever is larger) Q \geq 200	C C C C C C C C C C				
Capacitance Change Q	Within ±5% or ± 0.5pF (Whichever is larger) Q ≥ 200	Apply the 24h heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Let sit for 24±2 h at *room condition, then measure. Temperature (°C) Humidity 90-98%				
Capacitance Change Q	Within ±5% or ± 0.5pF (Whichever is larger) Q ≥ 200	treatment shown below, 10 consecutive times. Let sit for 24±2 h at *room condition, then measure. Temperature Humidity 80-98% Humidity 90-98% Humidity 90-98% 90-98% 90-98% 90-98% 90-98%				
Capacitance Change Q	(Whichever is larger) Q ≥ 200	Let sit for 24±2 h at *room condition, then measure. Temperature				
		Humidity 90-98% Humidity 90-98% Humidity 90-98% V 90-98 Humidity 90-98 Humid				
I.K.	500MΩ min.	70 90-96% 90-96 65 60 90-96% 90-96				
		60				
		55				
		e50 g45				
		11245				
		<u>\$</u> 40 <u>\$</u> 35				
		30 // // // // // // // // // // // // //				
		25 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\				
		20 15 +10 - 2 °C				
		10 Initial measurement				
		5				
		-5				
		One cycle 24 hours 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hours				
		Apply the rated voltage and DC1.3+0.2/-0 V (add 100kΩ residute 85±3°C and 80 to 85% humidity for 1,000±12h.				
Change	(Whichever is larger)	Remove and let sit for 24±2 h at *room condition, then n				
Q	Q ≥ 200	The charge/discharge current is less than 50mA.				
I.R.	500M Ω min.					
Appearance	No defects or abnormalities except color change of outer coating	Apply 25% of the rated voltage for 1,000±12h at 200±5°C. Let sit for 24±2 h at *room condition, then measure.				
		The charge/discharge current is less than 50mA.				
		4				
		+				
	No defects or abnormalities	Visual inspection				
	Within the specified dimensions	Using calipers and micrometers.				
A	To be easily legible.	Visual inspection				
		Per MIL-STD-202 Method 215 Solvent 1 : 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits				
Q	Q ≥ 1,000					
I.R.	10,000M Ω min.	Solvent 2 : Terpene defluxer				
		Solvent 3 : 42 parts (by volume) of water 1 part (by volume) of propylene glycol				
		monomethyl ether 1 part (by volume) of monoethanolamine				
i	Capacitance Change Q I.R. Appearance Capacitance Change Q I.R. sual imension Appearance Capacitance Q I.R. LR. sual imension	$\begin{array}{ c c c c }\hline Q & Q \geq 200 \\ \hline I.R. & 500M\Omega \ min. \\ \hline \\ I.R. & 500M\Omega \ min. \\ \hline \\ Capacitance & Within \pm 3\% \ or \pm 0.3 pF \\ Change & (Whichever is larger) \\ \hline Q & Q \geq 350 \\ \hline I.R. & 1,000M\Omega \ min. \\ \hline sual & No \ defects \ or \ abnormalities \\ \hline imension & Within \ the \ specified \ dimensions \\ \hline \\ To \ be \ easily \ legible. \\ \hline \\ Appearance & No \ defects \ or \ abnormalities \\ \hline Capacitance & Within \ the \ specified \ tolerance \\ \hline Q & Q \geq 1,000 \\ \hline \end{array}$				

No.	AEC-Q200 Test Item		Specification		AEC-Q200 Test Method				
11	Mechanical	Appearance	No defects or abnormalities		Three shocks in each direction should be applied along 3 mutually perpendicular axes of the test specimen (18 sho				
	Shock	Capacitance	Within the specified tolerance	The spec	The specified test pulse should be Half-sine and should duration :0.5ms, peak value:1,500G and velocity change			have	
		Q	Q ≥ 1,000	uuralion	.u.siiis, peak	value.1,500G al	id velocity charige	5. 4.71	
12	Vibration	Appearance	No defects or abnormalities		ne capacitor should be subjected to a simple harmonic motion				
		Capacitance	Within the specified tolerance	having a total amplitude of 1.5mm, the frequency being uniformly between the approximate limits of 10 and 2,00 The frequency range, from 10 to 2,000Hz and return to should be traversed in approximately 20 min. This motic should be applied for 12 items in each 3 mutually perpedirections (total of 36 times).				00Hz.	
		Q	Q ≥ 1,000					n	
13-1	Resistance to Soldering Heat (Non-Preheat)	Appearance	No defects or abnormalities	The lead wires should be immersed in the melted solder 2.0mm from the root of terminal at 260±5°C for 10±1 sec					
		Capacitance	Within ±2.5% or ±0.25pF	2.0111111	Post-treatment			Econus	
		Change	(Whichever is larger)	Post-ti					
		Dielectric Strength (Between terminals)	No defects	Capacitor should be stored for 24±2 hours at *room				onditic	
13-2	Resistance to	Appearance	No defects or abnormalities		st the capacitor should be stored at 120+0/-5°C for			60+0/-	
	Soldering Heat (On-Preheat)	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Then, th	seconds. Then, the lead wires should be immersed in the melted s				
		Dielectric Strength (Between terminals)	No defects	1.5 to 2.0mm from the root of terminal at 260±5°C for seconds. • Post-treatment Capacitor should be stored for 24±2 hours at *room					
13-3	Resistance to Soldering Heat (soldering iron method)	Appearance	No defects or abnormalities	Test cor	Test condition Termperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position				
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Solder					
		Dielectric Strength (Between terminals)		Straight Lead:1.5 to 2.0mm from the root of terminal. Crimp Lead:1.5 to 2.0mm from the end of lead bend. • Post-treatment Capacitor should be stored for 24±2 hours at *room conditions.				onditio	
14	Thermal Shock	Appearance	No defects or abnormalities						
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	in the fol	erform the 300 cycles according to the two heat treatments list the following table (Maximum transfer time is 20s.). Let sit f 4±2 h at *room condition, then measure.				
			, ,		Step	1	2	1	
		Q I.R.	$Q \ge 350$ 1,000M Ω min.	-	Temp. (°C)	-55+0/-3	200+5/-0		
			,		Time (min.)	15±3	15±3		
15	ESD	Appearance	No defects or abnormalities	Per AEC	-Q200-002				
		Capacitance	Within the specified tolerance						
		Q	Q ≥ 1,000	1					
	I.R.		10,000M Ω min.						
16	Solderability		Lead wire should be soldered with uniform coating on the axial direction over 95% of th circumferential direction.	The terminal of a capacitor is dipped into a solution of ethanologistic (JIS-K-8101) and rosin (JIS-K-5902) (25%rosin in weight propotion) and then into molten solder (JIS-Z-3282) for 2±0.5 In both cases the depth of dipping is up to about 1.5 to 2mm the terminal body. Temp. of solder: 245±5°C Lead Free Solder(Sn-3.0Ag-0.5Cu)					

No.	AEC- Test	Q200 Item	Specifications		AEC-Q200 Test Method				
17	Electrical	Apperance	No defects or	abnormalities	Visual inspection.				
	Characte- rization	Capacitance		ecified tolerance	The capacitance, Q should be measured at 25°C at the freque				
	nzation	Q	Q ≥ 1,000		and voltage shown in the table.				
					Nominal Cap. Frequency Voltage				
					$C \le 1000 pF$ $1 \pm 0.1 MHz$ $AC0.5 \text{ to } 5V(rms)$ $C > 1000 pF$ $1 \pm 0.1 kHz$ $AC1 \pm 0.2 V(rms)$				
			_		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		Insulation Resistance (I.R.)	Room Temperature		The insulation resistance should be measured at 25±3 °C with DC voltage not exceeding the rated voltage at normal temperate				
					and humidity and within 2 min. of charging.				
					(Charge/Discharge current ≤ 50mA)				
			High Temperature	20M Ω min.	The insulation resistance should be measured at 200±5 °C wit DC voltage not exceeding 25% of the rated voltage at normal				
					temperature and humidity and within 2 min. of charging.				
					(Charge/Discharge current ≤ 50mA)				
		Dielectric	Between	No defects or abnormalities	The capacitor should not be damaged when voltage in Table is				
		Strength	Terminals		applied between the terminations for 1 to 5 seconds. (Charge/Discharge current ≤ 50mA.)				
					(ondigo, 2.00.10.10 go odno.10 = 00.11 11)				
					Rated voltage Test voltage				
					DC100V 300% of the rated voltage				
			Body	No defects or abnormalities	The capacitor is placed in a container with				
			Insulation		metal balls of 1mm diameter so that each				
					terminal, short-circuit, is kept approximately 2mm from the balls as shown in the figure,				
					and voltage in table is impressed for 1 to 5				
					seconds between capacitor terminals and				
					metal balls. (Charge/Discharge current ≤ 50mA.)				
					Mei				
					•••				
					Rated voltage Test voltage DC100V 250% of the rated voltage				
18	Terminal	Tensile	Termination r	not to be broken or loosened	As in the figure, fix the capacitor body, apply the force gradual				
	Strength	Strength	Tommation for to be broken or looselled		to each lead in the radial direction of the capacitor until reaching				
					10N and then keep the force applied for 10±1 seconds.				
					 				
					<u>↓</u>				
					F				
		Bending Strength	Termination not to be broken or loosened		Each lead wire should be subjected to a force of 2.5N and the be bent 90° at the point of egress in one direction. Each wire then returned to the original position and bent 90° in the oppo				
		Strength							
					direction at the rate of one bend per 2 to 3 seconds.				
19	Capacitance			ecified Tolerance.	The capacitance change should be measured after 5min. at each specified temperature step.				
	Temperature Characteristics		0+30/-72ppm/°C (-55~25°C) 0±30ppm/°C (25~125°C)		' ' ' ' 				
				om/°C (125~200°C)	Step Temperature(°C) 1 25±2				
					2 -55±3				
					3 25±2				
					4 200±5				
					5 25±2				
					The temperature coefficient is determind using the capacitance				
					measured in step 3 as a reference. When cycling the temperate sequentially from step 1 through 5 (-55°C to +150°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A.				
						betweeen the maximum and minimum measured values in the			
oon	condition"	Temperature:1	5 to 35°C. Re	lative humidity:45 to 75%, Atmosphe	step 1, 3 and 5 by the capacitance value in step 3. ere pressure:86 to 106kPa				
			0, 110		_P				

6. Packing specification

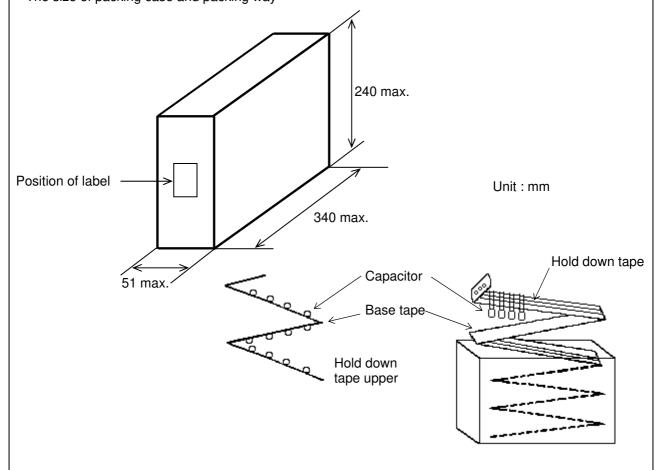

•Bulk type (Packing style code : B)

The size of packing case and packing way

The number of packing = *1 Packing quantity *2 n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

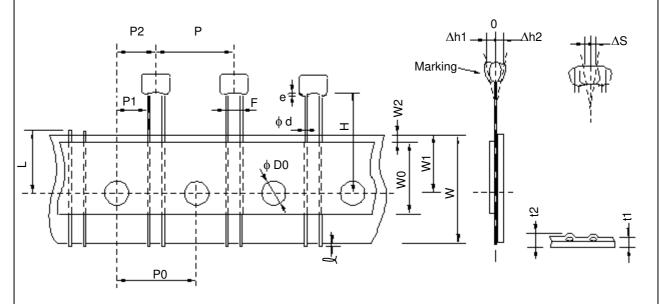


Note)

The outer package and the number of outer packing be changed by the order getting amount.

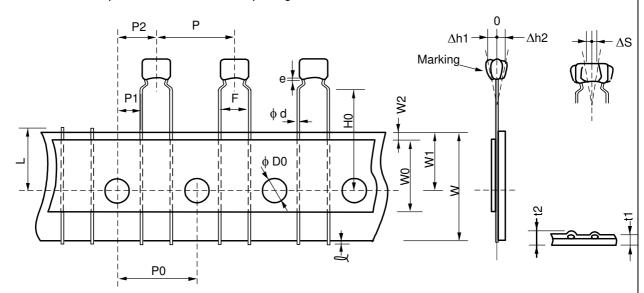
- •Ammo pack taping type (Packing style code : A)
 - · A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case.
 - · When body of the capacitor is piled on other body under it.

The size of packing case and packing way



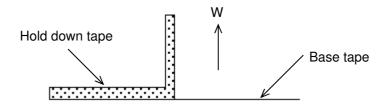
EKBCRPE01

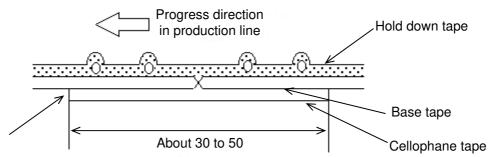
7. Taping specification


7-1. Dimension of capacitors on tape
Straight taping type < Lead code : DG >

Pitch of component 12.7mm / Lead spacing 2.5mm

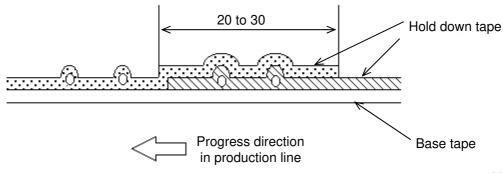
Item	Code	Dimensions	Remarks	
Pitch of component	Р	12.7+/-1.0		
Pitch of sprocket hole	P0	12.7+/-0.2		
Lead spacing	F	2.5+0.4/-0.2		
Length from hole center to component center	P2	6.35+/-1.3	Deviation of management dispation	
Length from hole center to lead	P1	5.1+/-0.7	Deviation of progress direction	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
Lead distance between reference and bottom plane	Н	20.0+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	D0	4.0+/-0.1		
Lead diameter	d	0.50+/-0.05		
Total tape thickness	t1	0.6+/-0.3		
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.	
B	∆h1	1.0 max.		
Deviation across tape	∆h2	1.0 max.		
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	1.5 max.		


Inside crimp taping type < Lead code : M2 > Pitch of component 12.7mm / Lead spacing 5.0mm


Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of museum adjustation
Length from hole center to lead	P1	3.85+/-0.7	Deviation of progress direction
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom	H0	20.0+/-0.5	
plane	110	20.0+/-0.3	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	D0	4.0+/-0.1	
Lead diameter	φd	0.50+/-0.05	
Total tape thickness	t1	0.6+/-0.3	
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
	∆h1	2.0 max. (Dimension code : W)	
Deviation across tape	∆h2	1.0 max. (except as above)	
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of o	rimp

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine