# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

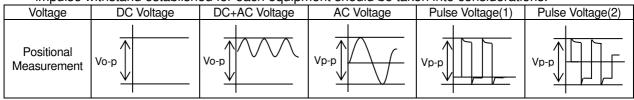


# muRata

**Reference Specification** 

200°C Operation Leaded MLCC for Automotive with AEC-Q200 RHS Series

Product specifications in this catalog are as of Jan. 2018, and are subject to change or obsolescence without notice.


Please consult the approval sheet before ordering.Please read rating and Cautions first.

# ▲ CAUTION

# **1. OPERATING VOLTAGE**

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.



#### 2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the selfgenerated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <u>the condition of</u> <u>atmosphere temperature 25 °C</u>. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char. : C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of  $\phi$ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

#### 3. Fail-safe

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

#### 4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

#### 5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

#### 8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

#### 9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- Undersea equipment
   Medical equipment
- 2. Aerospace equipment
- 4. Power plant control equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)8. Disaster prevention / crime prevention equipment
- 7. Traffic signal equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

#### NOTICE

# 1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions. Rinse bath capacity : Output of 20 watts per liter or less.

Rinsing time : 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

- 2. Soldering and Mounting
  - Insertion of the Lead Wire
    - When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
    - Insert the lead wire into the PCB with a distance appropriate to the lead space.

# 3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

# 

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

|      |                |                    |                                      | neien            | ence only                |                |               |                                     |                          |
|------|----------------|--------------------|--------------------------------------|------------------|--------------------------|----------------|---------------|-------------------------------------|--------------------------|
|      |                | cification         | is applied to 200<br>ements used for |                  |                          |                | series in acc | ordance with                        |                          |
| 2. F | Rating         |                    |                                      |                  |                          |                |               |                                     |                          |
|      | • Ap           |                    | timum temperatu<br>aximum accumu     |                  |                          | n 2000 l       | nours.        |                                     |                          |
|      | • Pa           | rt numbei          | r configuration                      |                  |                          |                |               |                                     |                          |
| е    | x.) <u>RHS</u> | <u> </u>           | 7J 2D                                | 101              | J                        | 1              | A2            | H01                                 | В                        |
|      | Serie          |                    | perature Rated<br>acteristic voltage | Capacitance      | Capacitance<br>tolerance | Dimens<br>code |               | Individual<br>specification<br>code | Packing<br>style<br>code |
|      | • Se           | ries               |                                      |                  |                          |                |               |                                     |                          |
|      |                | Code               | _                                    | Content          |                          |                |               |                                     |                          |
|      | l              | RHS                | Epo                                  | xy coated, 20    | 0°C max.                 |                |               |                                     |                          |
|      | • Ter          | nperature          | e characteristic                     |                  |                          |                |               |                                     |                          |
|      | Code           | Temp.<br>Char.     | Temp. Range                          | 000              | Temp.<br>ff.(ppm/°C)     |                | Standard      | Operating<br>Temp. Ran              |                          |
|      |                | Unar.              |                                      |                  | 47 (-55~25°(             | C)             | Temp.         | iemp. nan                           | ige                      |
|      | 7J             | UNJ                | -55∼200°C                            | -750±120         | (25∼125°<br>20 (125∼200  | C)             | 25°C          | -55 <b>~</b> 200°                   | °C                       |
|      |                |                    |                                      |                  | X                        | ,              |               |                                     |                          |
|      | ■na            | ted voltag<br>Code | Rated v                              | oltage           |                          |                |               |                                     |                          |
|      |                | 2D                 | DC20                                 | -                |                          |                |               |                                     |                          |
|      |                | 2H                 | DC50                                 | V0V              |                          |                |               |                                     |                          |
|      |                |                    | product temperative voltage and tem  |                  |                          |                |               |                                     |                          |
|      |                | 100                |                                      |                  |                          |                |               |                                     |                          |
|      |                |                    |                                      |                  | $\sim$                   |                |               |                                     |                          |
|      |                | 8                  |                                      |                  | 50%                      |                |               |                                     |                          |
|      |                | Rated voltage (%)  |                                      |                  | \                        |                |               |                                     |                          |
|      |                | Called v           |                                      |                  | 25%                      | 7              |               |                                     |                          |
|      |                |                    |                                      |                  |                          |                |               |                                     |                          |
|      |                |                    |                                      |                  |                          |                |               |                                     |                          |
|      |                | -75                | -50 -25 0 25                         | 50 75 100        | 125 150 175              | 200            |               |                                     |                          |
|      |                |                    | 1                                    | emperature (°C)  |                          | 1000000        |               |                                     |                          |
|      |                |                    |                                      |                  |                          |                |               |                                     |                          |
|      |                |                    |                                      |                  |                          |                |               |                                     |                          |
|      | • Ca           | apacitance         |                                      | to oignificant f | iauroo : tho lo          | ot diait a     | lonotoo tho r | nultiplier of 10                    | ) in nE                  |
|      |                |                    | t two digits deno<br>case of 101.    | le significant i | igures; the las          | st aigit c     | ienoles lhe r | nulliplier of TC                    | n pr.                    |
|      |                | ,                  | 10×10 <sup>1</sup> =                 | 100pF            |                          |                |               |                                     |                          |
|      |                |                    |                                      |                  |                          |                |               |                                     |                          |
|      |                |                    |                                      |                  |                          |                |               |                                     |                          |
|      |                |                    |                                      |                  |                          |                |               |                                     |                          |

## Capacitance tolerance

| Code | Capacitance tolerance |
|------|-----------------------|
| J    | +/-5%                 |

#### • Dimension code

| Co | ode | Dimensions (LxW) mm max. |
|----|-----|--------------------------|
|    | 1   | 4.0 x 3.5                |
|    | 2   | 5.5 x 4.0                |

#### • Lead code

| Code | Lead style               | Lead spacing (mm) |
|------|--------------------------|-------------------|
| A2   | Straight type            | 2.5+/-0.8         |
| DG   | Straight taping type     | 2.5+0.4/-0.2      |
| K1   | Inside crimp type        | 5.0+/-0.8         |
| M2   | Inside crimp taping type | 5.0+0.6/-0.2      |

Lead wire is solder coated CP wire.

- Individual specification code Murata's control code Please refer to [ Part number list ].
- Packing style code

| Code | Packing style       |
|------|---------------------|
| А    | Taping type of Ammo |
| В    | Bulk type           |

## 3. Marking

| Temp. char.           | : Letter code : 2 (UNJ char.)                              |
|-----------------------|------------------------------------------------------------|
| Capacitance           | : 3 digit numbers                                          |
| Capacitance tolerance | : Code                                                     |
| Rated voltage         | : Letter code : 6 (DC200V only. Except dimension code : 1) |
|                       | Letter code : 9 (DC500V only)                              |
| Company name code     | : Abbreviation : 🕞 (Except dimension code : 1)             |

(Ex.)

| Rated voltage<br>Dimension code | 200V         | 500V          |
|---------------------------------|--------------|---------------|
| 1                               | 2<br>101J    |               |
| 2                               | @ 103<br>J62 | (m 101<br>J92 |

| max.<br>0.5<br>±0.05<br>±0.05<br>umber T.<br>A2H01B UI<br>A2H01B UI                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| umber T.<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI                                                                            |
| umber T.<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI                                                                            |
| A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI                                                                                                                               |
| A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI                                                                                                                               |
| A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI                                                                                                                                                         |
| A2H01B UI<br>A2H01B UI<br>A2H01B UI<br>A2H01B UI                                                                                                                                                                      |
| A2H01B UI<br>A2H01B UI<br>A2H01B UI                                                                                                                                                                                   |
| A2H01B UI                                                                                                                                                                                                             |
| A2H01B U                                                                                                                                                                                                              |
|                                                                                                                                                                                                                       |
| \2H01B U                                                                                                                                                                                                              |
|                                                                                                                                                                                                                       |
| A2H01B U                                                                                                                                                                                                              |
| A2H01B UI                                                                                                                                                                                                             |
| (1H01B U                                                                                                                                                                                                              |
| (1H01B UI                                                                                                                                                                                                             |
|                                                                                                                                                                                                                       |
| (1H01B UI                                                                                                                                                                                                             |
| (1H01B UI                                                                                                                                                                                                             |
| (1H01B UI                                                                                                                                                                                                             |
| (1H01B U                                                                                                                                                                                                              |
|                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                       |
| K1H01B U                                                                                                                                                                                                              |
| (1H01B UI                                                                                                                                                                                                             |
| K1H01B U                                                                                                                                                                                                              |
| K1H01B         UI           K1H01B         UI           K1H01B         UI           K1H01B         UI                                                                                                                 |
| (1H01B         UI           (1H01B         UI           (1H01B         UI           (1H01B         UI           (1H01B         UI                                                                                     |
| (1H01B         UI           (1H01B         UI |
| <                                                                                                                                                                                                                     |

Г

\_\_\_\_\_

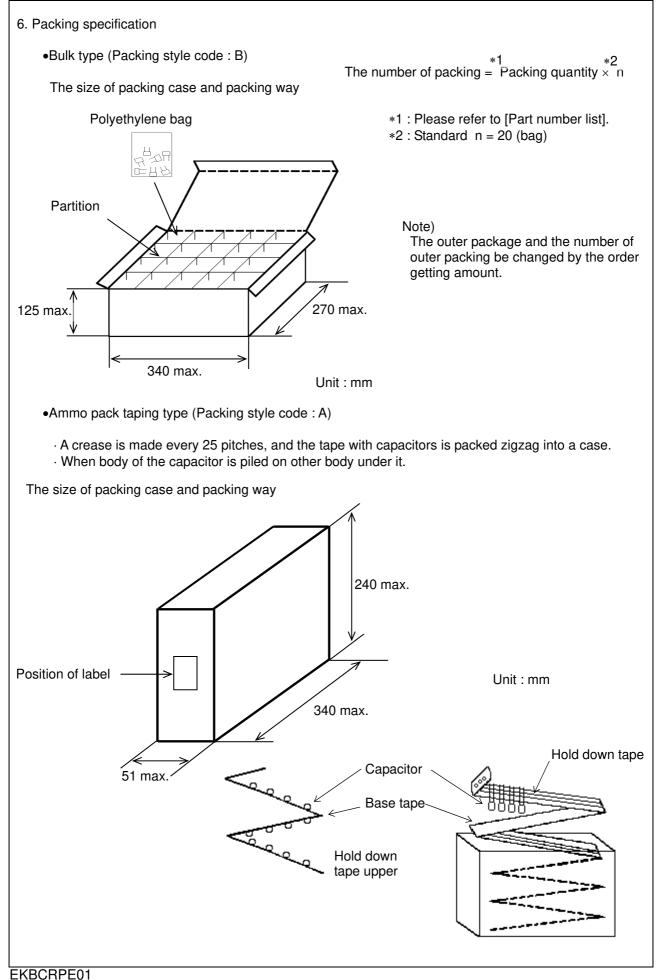
1

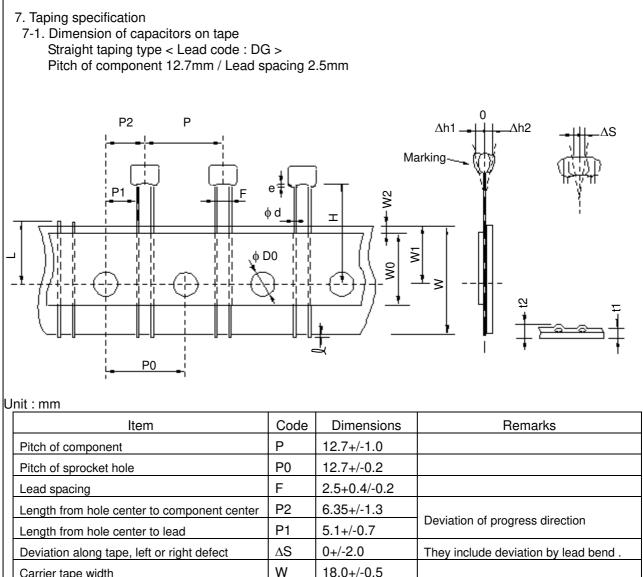
| •Staight Tapi<br>(Lead Code:D |                                          |                 |               | nside (<br>(Lead Co |           |            | ng  |               |            |          |                  |              |               |
|-------------------------------|------------------------------------------|-----------------|---------------|---------------------|-----------|------------|-----|---------------|------------|----------|------------------|--------------|---------------|
|                               | L max.                                   | Tm:<br>→ <br>05 | ax.<br> ←<br> |                     |           | HO ± 0.5   |     | F ±0.6<br>0.2 |            | <u> </u> |                  | nax.         |               |
|                               |                                          |                 | DC<br>Rated   |                     |           |            |     |               |            |          | Jnit : ı<br>Size |              |               |
| Customer Part Number          | Murata Part Number                       | T.C.            | volt.<br>(V)  | Cap.                | Cap. tol. | L          | W   | W1            | F          | Т        | H/H0             | Lead<br>Code | qty.<br>(pcs) |
|                               | RHS7J2D101J1DGH01A                       | UNJ             | 200           | 100pF               | ±5%       | 4.0        | 3.5 | -             | 2.5        | 2.5      | 20.0             | 1DG          | 2000          |
|                               | RHS7J2D151J1DGH01A                       | UNJ             | 200           | 150pF               | ±5%       | 4.0        | 3.5 | -             | 2.5        | 2.5      | 20.0             | 1DG          | 2000          |
|                               | RHS7J2D221J1DGH01A                       | UNJ             | 200           | 220pF               | ±5%       | 4.0        | 3.5 | -             | 2.5        | 2.5      | 20.0             | 1DG          | 2000          |
|                               | RHS7J2D331J1DGH01A                       | UNJ             | 200           | 330pF               | ±5%       | 4.0        | 3.5 | -             | 2.5        |          | 20.0             |              | 2000          |
|                               | RHS7J2D471J1DGH01A                       | UNJ             | 200           | 470pF               | ±5%       | 4.0        | 3.5 | -             | 2.5        | 2.5      | 20.0             |              | 2000          |
|                               | RHS7J2D681J1DGH01A                       | UNJ             | 200           | 680pF               | ±5%       | 4.0        | 3.5 | -             | 2.5        | 2.5      | 20.0             |              | 2000          |
|                               | RHS7J2D102J1DGH01A                       | UNJ             | 200           | 1000pF              | ±5%       | 4.0        | 3.5 | -             | 2.5        | 2.5      | 20.0             |              | 2000          |
|                               | RHS7J2D152J1DGH01A                       | UNJ             | 200           | 1500pF              | ±5%       | 4.0        | 3.5 | -             | 2.5        | 2.5      | 20.0             |              | 2000          |
|                               | RHS7J2D222J1DGH01A                       | UNJ             | 200           | 2200pF              | ±5%       | 4.0        | 3.5 | -             | 2.5        | 2.5      | 20.0             |              | 2000          |
|                               | RHS7J2D332J1DGH01A                       | UNJ             | 200           | 3300pF              | ±5%       | 4.0        | 3.5 | -             | 2.5        | 2.5      | 20.0             |              | 2000          |
|                               | RHS7J2D472J1DGH01A                       | UNJ             | 200           | 4700pF              | ±5%       | 4.0        | 3.5 | -             | 2.5        | 2.5      | 20.0             |              | 2000          |
|                               | RHS7J2D682J2DGH01A                       | UNJ             | 200           | 6800pF              | ±5%       | 5.5        | 4.0 | -             | 2.5        | 3.15     | 20.0             |              | 1500          |
|                               |                                          | UNJ             | 200           | 10000pF             | ±5%       | 5.5        | 4.0 | -             | 2.5        |          | 20.0             |              | 1500          |
|                               | RHS7J2D103J2DGH01A<br>RHS7J2D101J1M2H01A | UNJ             | 200           |                     | ±5%       | 5.5<br>4.0 | 4.0 | - 5.0         | 2.5<br>5.0 | 2.5      | 20.0             |              | 2000          |
|                               |                                          | UNJ             | 200           | 100pF               | ±5%       | 4.0        | 3.5 | 5.0           | 5.0        | 2.5      | 20.0             |              | 2000          |
|                               | RHS7J2D151J1M2H01A                       |                 |               | 150pF               |           |            |     |               |            |          |                  |              |               |
|                               | RHS7J2D221J1M2H01A                       | UNJ             | 200           | 220pF               | ±5%       | 4.0        | 3.5 | 5.0           | 5.0        | 2.5      | 20.0             |              | 2000          |
|                               | RHS7J2D331J1M2H01A                       | UNJ             | 200           | 330pF               | ±5%       | 4.0        | 3.5 | 5.0           | 5.0        | 2.5      | 20.0             |              | 2000          |
|                               | RHS7J2D471J1M2H01A                       | UNJ             | 200           | 470pF               | ±5%       | 4.0        | 3.5 | 5.0           | 5.0        | 2.5      | 20.0             |              | 2000          |
|                               | RHS7J2D681J1M2H01A                       | UNJ             | 200           | 680pF               |           | 4.0        | 3.5 | 5.0           | 5.0        |          | 20.0             |              | 2000          |
|                               | RHS7J2D102J1M2H01A                       | UNJ             | 200           | 1000pF              |           | 4.0        | 3.5 | 5.0           | 5.0        |          | 20.0             |              | 2000          |
|                               | RHS7J2D152J1M2H01A                       | UNJ             | 200           | 1500pF              |           | 4.0        | 3.5 | 5.0           | 5.0        |          | 20.0             |              | 2000          |
|                               | RHS7J2D222J1M2H01A                       | UNJ             | 200           | 2200pF              |           | 4.0        | 3.5 | 5.0           | 5.0        |          | 20.0             |              | 2000          |
|                               | RHS7J2D332J1M2H01A                       | UNJ             | 200           | 3300pF              | $\pm$ 5%  | 4.0        | 3.5 | 5.0           | 5.0        | 2.5      | 20.0             | 1M2          | 2000          |
|                               | RHS7J2D472J1M2H01A                       | UNJ             | 200           | 4700pF              | $\pm$ 5%  | 4.0        | 3.5 | 5.0           | 5.0        |          | 20.0             | 1M2          | 2000          |
|                               | RHS7J2D682J2M2H01A                       | UNJ             | 200           | 6800pF              |           | 5.5        | 4.0 | 6.0           | 5.0        |          | 20.0             |              | 1500          |
|                               | RHS7J2D103J2M2H01A                       | UNJ             | 200           | 10000pF             | $\pm$ 5%  | 5.5        | 4.0 | 6.0           | 5.0        | 3.15     | 20.0             | 2M2          | 1500          |
|                               | RHS7J2H101J2M2H01A                       | UNJ             | 500           | 100pF               | $\pm$ 5%  | 5.5        | 4.0 | 6.0           | 5.0        | 3.15     | 20.0             | 2M2          | 1500          |
|                               | RHS7J2H151J2M2H01A                       | UNJ             | 500           | 150pF               | $\pm$ 5%  | 5.5        | 4.0 | 6.0           | 5.0        | 3.15     | 20.0             | 2M2          | 1500          |
|                               | RHS7J2H221J2M2H01A                       | UNJ             | 500           | 220pF               | $\pm$ 5%  | 5.5        | 4.0 | 6.0           | 5.0        | 3.15     | 20.0             | 2M2          | 1500          |
|                               | RHS7J2H331J2M2H01A                       | UNJ             | 500           | 330pF               | $\pm$ 5%  | 5.5        | 4.0 | 6.0           | 5.0        | 3.15     | 20.0             | 2M2          | 1500          |
|                               | RHS7J2H471J2M2H01A                       | UNJ             | 500           | 470pF               | ±5%       | 5.5        | 4.0 | 6.0           | 5.0        | 3.15     | 20.0             | 2M2          | 1500          |
|                               | RHS7J2H681J2M2H01A                       | UNJ             | 500           | 680pF               | ±5%       | 5.5        | 4.0 | 6.0           | 5.0        | 3.15     | 20.0             | 2M2          | 1500          |
|                               | RHS7J2H102J2M2H01A                       | UNJ             | 500           | 1000pF              | $\pm$ 5%  | 5.5        | 4.0 | 6.0           | 5.0        | 3.15     | 20.0             | 2M2          | 1500          |
|                               | RHS7J2H152J2M2H01A                       | UNJ             | 500           | 1500pF              | $\pm$ 5%  | 5.5        | 4.0 | 6.0           | 5.0        | 3.15     | 20.0             | 2M2          | 1500          |
|                               | RHS7J2H222J2M2H01A                       | UNJ             | 500           | 2200pF              | ±5%       | 5.5        | 4.0 | 6.0           | 5.0        | 3.15     | 20.0             | 2M2          | 1500          |
|                               | RHS7J2H332J2M2H01A                       | UNJ             | 500           | 3300pF              | ±5%       | 5.5        | 4.0 | 6.0           | 5.0        | 3.15     | 20.0             | 2M2          | 1500          |
|                               | RHS7J2H472J2M2H01A                       | UNJ             | 500           | 4700pF              | ±5%       | 5.5        | 4.0 | 6.0           | 5.0        | 3.15     | 20.0             | 2M2          | 1500          |
|                               |                                          |                 |               |                     |           |            |     |               |            |          |                  |              |               |

# **Reference only**

|     | ニしょうし リアレルリ                    | Murata S              | tandard Specifications and Test Metho                                                                                                                            | ods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|-----|--------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|     | AEC-Q200 Specification         |                       | ·                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| No. | Test                           | Item                  | Specification                                                                                                                                                    | AEC-Q200 Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|     | Pre-and Post<br>Electrical Tes |                       |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     | High<br>Temperature            | Appearance            | o defects or abnormalities except color change of<br>uter coating. Sit the capacitor for 1,000±12h at 200±5°C. Let sit for 24±<br>*room condition, then measure. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     | Exposure<br>(Storage)          | Capacitance<br>Change | Within ±3% or ±0.3pF<br>(Whichever is larger)                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                | Q                     | Q ≥ 350                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                | I.R.                  | 1,000MΩ min.                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     | Temperature<br>Cycling         |                       | No defects or abnormalities except color<br>change of outer coating                                                                                              | Perform the 1,000 cycles according to the four heat treatment<br>listed in the following table. Let sit for 24±2 h at *room condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|     |                                | Capacitance<br>Change | Within ±5% or ±0.5pF<br>(Whichever is larger)                                                                                                                    | then measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|     |                                | Q                     | $Q \ge 350$                                                                                                                                                      | - <u>Step 1 2 3 4</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|     |                                | I.R.                  | 1,000MΩ min.                                                                                                                                                     | Temp.<br>(°C)         -55+0/-3         Room<br>Temp.         200+5/-0         Room<br>Temp.           Time<br>(min.)         15±3         1         15±3         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| 4   | Moisture                       | Appeorance            | No defecto er obsermalition                                                                                                                                      | Apply the 24h heat (25 to 65°C) and humidity (80 to 98%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|     | Resistance                     |                       | No defects or abnormalities<br>Within $\pm$ 5% or $\pm$ 0.5pF                                                                                                    | treatment shown below, 10 consecutive times.<br>Let sit for $24\pm 2$ h at *room condition, then measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|     |                                | Change                | (Whichever is larger)                                                                                                                                            | in the second seco |  |  |  |  |  |  |  |  |
|     |                                | Q<br>I.R.             | $Q \ge 200$                                                                                                                                                      | Humidity 80~98% Humidity 80~98% Humidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|     |                                | ı.n.                  | 500MΩ min.                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  | φ50 <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  | 20 + + + 10 + + 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  | 15 - 2 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  | 10 Initial measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  | -10 One cycle 24 hours<br>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| 5   | Biased                         | Appearance            | No defects or abnormalities                                                                                                                                      | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 3<br>Hours<br>Apply the rated voltage and DC1.3+0.2/-0 V (add 100kΩ res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|     | Humidity                       | Capacitance           | Within $\pm 5\%$ or $\pm 0.5pF$                                                                                                                                  | at $85\pm3^{\circ}$ C and 80 to $85\%$ humidity for 1,000±12h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|     | -                              | Change                | (Whichever is larger)                                                                                                                                            | Remove and let sit for 24±2 h at *room condition, then meas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|     |                                | Q                     | Q ≥ 200                                                                                                                                                          | The charge/discharge current is less than 50mA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                | I.R.                  | 500MΩ min.                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     | Operational<br>Life            | Appearance            | No defects or abnormalities except color                                                                                                                         | Apply 25% of the rated voltage for 1,000±12h at 200±5°C.<br>Let sit for 24±2 h at *room condition, then measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|     |                                | Capacitance           | change of outer coating<br>Within ±3% or ±0.3pF                                                                                                                  | The charge/discharge current is less than 50mA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                | Change                | (Whichever is larger)                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                | Q                     | $Q \ge 350$                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|     |                                | I.R.                  | 1,000MΩ min.                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|     | External Visu                  |                       | No defects or abnormalities                                                                                                                                      | Visual inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|     | Physical Dim                   | ension                | Within the specified dimensions                                                                                                                                  | Using calipers and micrometers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| 9   | Marking                        | A                     | To be easily legible.                                                                                                                                            | Visual inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|     | Resistance                     |                       | No defects or abnormalities<br>Within the specified tolerance                                                                                                    | Per MIL-STD-202 Method 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|     | to Solvents                    | _                     |                                                                                                                                                                  | Solvent 1 : 1 part (by volume) of isopropyl alcohol<br>3 parts (by volume) of mineral spirits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|     |                                |                       | Q ≥ 1,000                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  | Solvent 2 : Terpene defluxer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|     |                                | Q<br>I.R.             | 10,000MΩ min.                                                                                                                                                    | Solvent 2 : Terpene defluxer<br>Solvent 3 : 42 parts (by volume) of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|     | lo contonito                   |                       |                                                                                                                                                                  | Solvent 2 : Terpene defluxer<br>Solvent 3 : 42 parts (by volume) of water<br>1 part (by volume) of propylene glycol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|     |                                |                       |                                                                                                                                                                  | Solvent 2 : Terpene defluxer<br>Solvent 3 : 42 parts (by volume) of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |

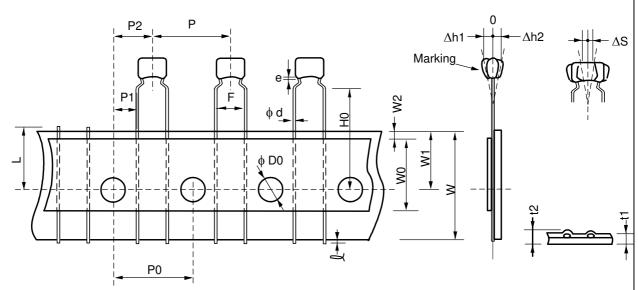
# **Reference only**


| No. | AEC-0<br>Test                   |                                                  | Specification                                                                                                             |                                                                                                                                                                                                          | AE                                                                                                                                                                                                                                                                         | C-Q200 Test I                         | Method                                                |            |  |
|-----|---------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|------------|--|
| 11  | Mechanical<br>Shock             | Appearance                                       | n                                                                                                                         |                                                                                                                                                                                                          | Three shocks in each direction should be applied along 3<br>mutually perpendicular axes of the test specimen (18 shocks                                                                                                                                                    |                                       |                                                       |            |  |
|     | GHOCK                           | Capacitance                                      | Within the specified tolerance                                                                                            | The specified test pulse should I                                                                                                                                                                        |                                                                                                                                                                                                                                                                            | e should be Ha                        |                                                       |            |  |
|     |                                 | Q                                                | Q ≥ 1,000                                                                                                                 |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |                                       | , ,                                                   |            |  |
| 12  | Vibration                       | Appearance                                       | No defects or abnormalities                                                                                               |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |                                       | a simple harmonic<br>frequency being                  |            |  |
|     |                                 | Capacitance                                      | Within the specified tolerance                                                                                            | uniformly                                                                                                                                                                                                | between the                                                                                                                                                                                                                                                                | approximate lin                       | nits of 10 and 2,00                                   | 0Hz.       |  |
|     |                                 | Q                                                | Q ≥ 1,000                                                                                                                 | should b<br>should b                                                                                                                                                                                     | uniformly between the approximate limits of 10 and 2,00<br>The frequency range, from 10 to 2,000Hz and return to<br>should be traversed in approximately 20 min. This motio<br>should be applied for 12 items in each 3 mutually perpe-<br>directions (total of 36 times). |                                       |                                                       |            |  |
| 3-1 | Resistance to<br>Soldering Heat | Appearance                                       | No defects or abnormalities                                                                                               |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |                                       | n the melted solde                                    |            |  |
|     | (Non-Preheat)                   | Capacitance<br>Change                            | Within ±2.5% or ±0.25pF<br>(Whichever is larger)                                                                          |                                                                                                                                                                                                          | reatment                                                                                                                                                                                                                                                                   |                                       |                                                       |            |  |
|     |                                 | Dielectric<br>Strength<br>(Between<br>terminals) | No defects                                                                                                                | Capacit                                                                                                                                                                                                  | or should be s                                                                                                                                                                                                                                                             | stored for 24±2                       | hours at *room co                                     | onditi     |  |
| 3-2 | Resistance to                   | Appearance                                       | No defects or abnormalities                                                                                               |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            | ould be stored a                      | t 120+0/-5°C for 6                                    | 60+0/      |  |
|     | Soldering Heat<br>(On-Preheat)  | Capacitance<br>Change                            | Within ±2.5% or ±0.25pF<br>(Whichever is larger)                                                                          | seconds.<br>Then, the lead wires should be immersed in the melted s                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                       |                                                       |            |  |
|     |                                 | Dielectric<br>Strength                           | No defects                                                                                                                |                                                                                                                                                                                                          | 1.5 to 2.0mm from the root of terminal at 260±5°(<br>seconds.                                                                                                                                                                                                              |                                       |                                                       |            |  |
|     |                                 | (Between<br>terminals)                           |                                                                                                                           | Post-treatment<br>Capacitor should be stored for 24±2 hours at *room<br>condition.                                                                                                                       |                                                                                                                                                                                                                                                                            |                                       |                                                       |            |  |
| 3-3 | Resistance to<br>Soldering Heat | Appearance                                       | No defects or abnormalities                                                                                               | Test condition<br>Termperature of iron-tip : 350±10°C<br>Soldering time : 3.5±0.5 seconds<br>Soldering position                                                                                          |                                                                                                                                                                                                                                                                            |                                       |                                                       |            |  |
|     | (soldering iron<br>method)      | Capacitance<br>Change                            | Within ±2.5% or ±0.25pF<br>(Whichever is larger)                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |                                       |                                                       |            |  |
|     |                                 | Dielectric<br>Strength<br>(Between<br>terminals) | No defects                                                                                                                | <ul> <li>Straight Lead:1.5 to 2.0mm from the root of t<br/>Crimp Lead:1.5 to 2.0mm from the end of lea</li> <li>Post-treatment<br/>Capacitor should be stored for 24±2 hours a<br/>condition.</li> </ul> |                                                                                                                                                                                                                                                                            | end of lead bend.<br>2 hours at *room |                                                       |            |  |
| 14  | Thermal Shock                   | Appearance                                       | No defects or abnormalities                                                                                               | Perform the 300 cycles according to the two heat tro                                                                                                                                                     |                                                                                                                                                                                                                                                                            |                                       | ne two heat treatm                                    | ents       |  |
|     |                                 | Capacitance<br>Change                            | Within ±5% or ±0.5pF<br>(Whichever is larger)                                                                             | listed in the following table(Maximum transfer time is 20s.).<br>for 24±2 h at *room condition, then measure.                                                                                            |                                                                                                                                                                                                                                                                            |                                       |                                                       | .). L      |  |
|     |                                 | Q                                                | Q ≥ 350                                                                                                                   |                                                                                                                                                                                                          | Step                                                                                                                                                                                                                                                                       | 1                                     | 2                                                     |            |  |
|     |                                 | I.R.                                             | 1,000MΩ min.                                                                                                              |                                                                                                                                                                                                          | Temp.<br>(°C)                                                                                                                                                                                                                                                              | -55+0/-3                              | 200+5/-0                                              |            |  |
|     |                                 |                                                  |                                                                                                                           |                                                                                                                                                                                                          | Time<br>(min.)                                                                                                                                                                                                                                                             | 15±3                                  | 15±3                                                  |            |  |
| 15  | ESD                             | Appearance                                       | No defects or abnormalities                                                                                               | Per AEC                                                                                                                                                                                                  | -Q200-002                                                                                                                                                                                                                                                                  |                                       |                                                       | _          |  |
|     |                                 | Capacitance                                      | Within the specified tolerance                                                                                            | -                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                            |                                       |                                                       |            |  |
|     |                                 | Q                                                | $Q \ge 1,000$                                                                                                             | -                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                            |                                       |                                                       |            |  |
|     |                                 | G<br>I.R.                                        | 10,000MΩ min.                                                                                                             | -                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                            |                                       |                                                       |            |  |
| 16  | Soldorobility                   |                                                  |                                                                                                                           | The term                                                                                                                                                                                                 | ningl of a ser-                                                                                                                                                                                                                                                            | oitor io diana - 1                    | nto o colution of a                                   | there      |  |
| 16  | Solderability                   |                                                  | Lead wire should be soldered with uniform<br>coating on the axial direction over 95% of the<br>circumferential direction. | e (JIS-K-8 <sup>-</sup><br>propotion<br>In both ca<br>the termi<br>Temp. of<br>245±5°                                                                                                                    | 101) and rosin<br>n) and then into<br>ases the deptinal<br>hal body.<br>solder :<br>C Lead Free                                                                                                                                                                            | (JIS-K-5902) (2<br>o molten solder    | (JIS-Z-3282) for 2<br>p to about 1.5 to 2<br>g-0.5Cu) | it<br>±0.5 |  |


ſ

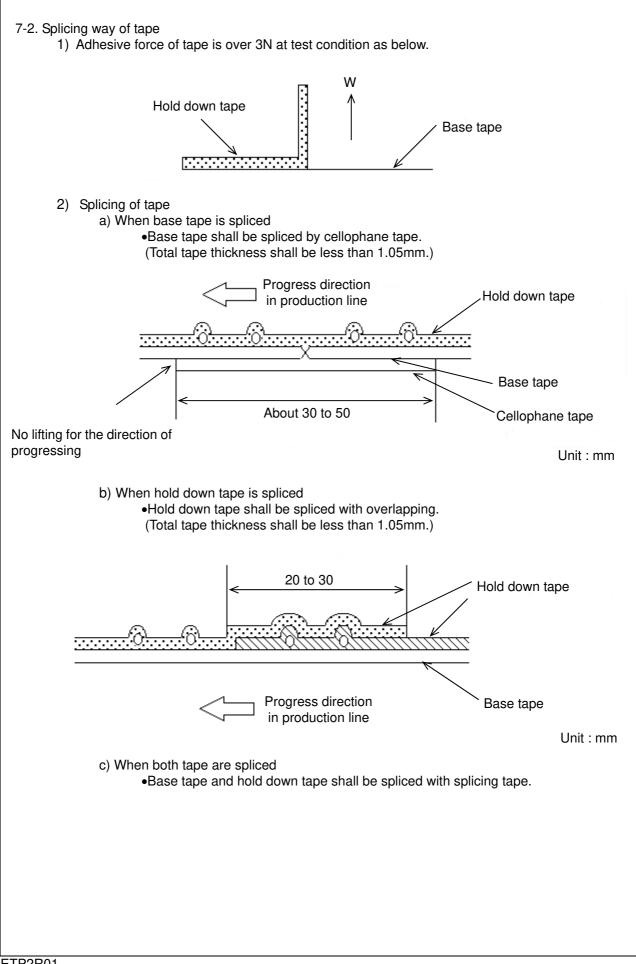
# **Reference only**

| 0.                                       | -                     | -Q200<br>t Item                    |                                          | Specifications                                                                          | AEC-Q200 Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|------------------------------------------|-----------------------|------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 7                                        | Electrical            | Apperance                          | No defects of                            | abnormalities                                                                           | Visual inspection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                          | Characte-<br>rization | Capacitance<br>Q                   | Within the sp $Q \ge 1,000$              | ecified tolerance                                                                       | The capacitance, Q should be measured at 25°C at the freque<br>and voltage shown in the table.                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                          |                       |                                    |                                          |                                                                                         | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                          |                       | Insulation<br>Resistance<br>(I.R.) | Room<br>Temperature                      | 10,000MΩ min.                                                                           | The insulation resistance should be measured at 25±3 °C with DC voltage not exceeding the rated voltage at normal tempera and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA)                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                          |                       |                                    | High<br>Temperature                      | 20MΩ min.                                                                               | The insulation resistance should be measured at $200\pm5$ °C w DC voltage not exceeding 25% of the rated voltage at norma temperature and humidity and within 2 min. of charging. (Charge/Discharge current $\leq$ 50mA)                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                          |                       | Dielectric<br>Strength             | Between<br>Terminals                     | No defects or abnormalities                                                             | The capacitor should not be damaged when voltage in Table applied between the terminations for 1 to 5 seconds. (Charge/Discharge current $\leq$ 50mA.)                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                          |                       |                                    | Dedu                                     |                                                                                         | Rated voltage         Test voltage           DC200V         250% of the rated voltage           DC500V         150% of the rated voltage                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                          |                       |                                    | Body<br>Insulation                       | No defects or abnormalities                                                             | The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit, is kept approximately 2mm from the balls as shown in the figure, and voltage in table is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current $\leq$ 50mA.)                                                                                                                                                                                     |  |  |  |  |
|                                          |                       |                                    |                                          |                                                                                         | Rated voltage         Test voltage           DC200V         250% of the rated voltage           DC500V         150% of the rated voltage                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                          | Terminal<br>Strength  | Tensile<br>Strength                | Termination not to be broken or loosened |                                                                                         | As in the figure, fix the capacitor body, apply the force gradual<br>to each lead in the radial direction of the capacitor until reach<br>10N and then keep the force applied for $10\pm1$ seconds.                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                          |                       | Bending<br>Strength                | Termination r                            | iot to be broken or loosened                                                            | Each lead wire should be subjected to a force of 2.5N and the be bent 90° at the point of egress in one direction. Each wire then returned to the original position and bent 90° in the oppordirection at the rate of one bend per 2 to 3 seconds.                                                                                                                                                                                                                                                           |  |  |  |  |
| 9 Capacitano<br>Temperatu<br>Characteris |                       | )                                  | -750+120/-<br>-750±120p                  | ecified Tolerance.<br>347ppm/°C (-55~25°C)<br>pm/°C (25~125°C)<br>120ppm/°C (125~200°C) | The capacitance change should be measured after 5min. at<br>each specified temperature step.StepTemperature(°C)1 $25\pm 2$ 2 $-55\pm 3$ 3 $25\pm 2$ 4 $200\pm 5$ 5 $25\pm 2$                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                          |                       |                                    |                                          |                                                                                         | The temperature coefficient is determind using the capacitance<br>measured in step 3 as a reference. When cycling the temperal<br>sequentially from step 1 through 5 (-55°C to +150°C)<br>the capacitance should be within the specified tolerance for the<br>temperature coefficient and capacitance change as Table A.<br>The capacitance drift is caluculated by dividing the difference<br>between the maximum and minimum measured values in the<br>step 1, 3 and 5 by the capacitance value in step 3. |  |  |  |  |


Γ






| ltem                                             | Code | Dimensions   | Remarks                                |
|--------------------------------------------------|------|--------------|----------------------------------------|
| Pitch of component                               | Р    | 12.7+/-1.0   |                                        |
| Pitch of sprocket hole                           | P0   | 12.7+/-0.2   |                                        |
| Lead spacing                                     | F    | 2.5+0.4/-0.2 |                                        |
| Length from hole center to component center      | P2   | 6.35+/-1.3   | Deviation of progress direction        |
| Length from hole center to lead                  | P1   | 5.1+/-0.7    |                                        |
| Deviation along tape, left or right defect       | ΔS   | 0+/-2.0      | They include deviation by lead bend .  |
| Carrier tape width                               | W    | 18.0+/-0.5   |                                        |
| Position of sprocket hole                        | W1   | 9.0+0/-0.5   | Deviation of tape width direction      |
| Lead distance between reference and bottom plane | н    | 20.0+/-0.5   |                                        |
| Protrusion length                                | l    | 0.5 max.     |                                        |
| Diameter of sprocket hole                        | D0   | 4.0+/-0.1    |                                        |
| Lead diameter                                    | d    | 0.50+/-0.05  |                                        |
| Total tape thickness                             | t1   | 0.6+/-0.3    | They include hold down tape thickness. |
| Total thickness of tape and lead wire            | t2   | 1.5 max.     |                                        |
| Deviation across tape                            | ∆h1  | 1.0 max.     |                                        |
|                                                  | ∆h2  |              |                                        |
| Portion to cut in case of defect                 | L    | 11.0+0/-1.0  |                                        |
| Hold down tape width                             | W0   | 9.5 min.     |                                        |
| Hold down tape position                          | W2   | 1.5+/-1.5    |                                        |
| Coating extension on lead                        | е    | 1.5 max.     |                                        |

Inside crimp taping type < Lead code : M2 > Pitch of component 12.7mm / Lead spacing 5.0mm



Unit : mm

| Item                                             | Code | Dimensions                    | Remarks                                |
|--------------------------------------------------|------|-------------------------------|----------------------------------------|
| Pitch of component                               | Р    | 12.7+/-1.0                    |                                        |
| Pitch of sprocket hole                           | P0   | 12.7+/-0.2                    |                                        |
| Lead spacing                                     | F    | 5.0+0.6/-0.2                  |                                        |
| Length from hole center to component center      | P2   | 6.35+/-1.3                    | Deviation of progress direction        |
| Length from hole center to lead                  | P1   | 3.85+/-0.7                    |                                        |
| Deviation along tape, left or right defect       | ΔS   | 0+/-2.0                       | They include deviation by lead bend .  |
| Carrier tape width                               | W    | 18.0+/-0.5                    |                                        |
| Position of sprocket hole                        | W1   | 9.0+0/-0.5                    | Deviation of tape width direction      |
| Lead distance between reference and bottom plane | H0   | 20.0+/-0.5                    |                                        |
| Protrusion length                                | l    | 0.5 max.                      |                                        |
| Diameter of sprocket hole                        | D0   | 4.0+/-0.1                     |                                        |
| Lead diameter                                    | φd   | 0.50+/-0.05                   |                                        |
| Total tape thickness                             | t1   | 0.6+/-0.3                     | They include hold down tape thickness. |
| Total thickness of tape and lead wire            | t2   | 1.5 max.                      |                                        |
| Deviation across tape                            | ∆h1  | 2.0 max. (Dimension code : W) |                                        |
|                                                  | ∆h2  | 1.0 max. (except as above)    |                                        |
| Portion to cut in case of defect                 | L    | 11.0+0/-1.0                   |                                        |
| Hold down tape width                             | W0   | 9.5 min.                      |                                        |
| Hold down tape position                          | W2   | 1.5+/-1.5                     |                                        |
| Coating extension on lead                        | е    | Up to the end of crimp        |                                        |



#### EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials •1000 ppm maximum Lead

- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

### (2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine