

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

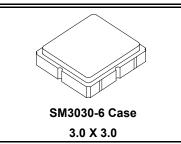
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



RFM products are now Murata products.

RO3073E-1

315.0 MHz SAW Resonator

Absolute Maximum Ratings

Quartz Stability

Very Low Series Resistance

Complies with Directive 2002/95/EC (RoHS)

, account maximum runnings					
Rating	Value	Units			
Input Power Level	0	dBm			
DC Voltage	12	VDC			
Storage Temperature Range	-40 to +125	°C			
Operating Temperature Range	-40 to +105	°C			
Soldering Temperature (10 seconds / 5 cycles max.)	260	°C			

The RO3073E-1 is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount, ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization of local oscillators operating at

approximately 315 MHz. This SAW was designed for AM transmitters in automotive-keyless-entry applications operating in the USA under FCC Part 15, in Canada under DoC RSS-210, and in Italy.

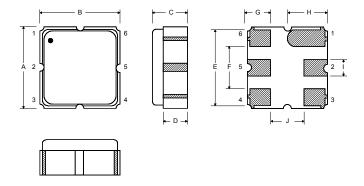
Ideal for 315 MHz Automotive-Keyless-Entry Transmitters

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Frequency (+25 °C)	Absolute Frequency	f _C	2, 3, 4, 5	314.950		315.050	MHz
	Tolerance from 315.0 MHz	Δf_{C}	2, 3, 4, 3			±50	kHz
Insertion Loss		IL	2, 5, 6		1.6	2.4	dB
Quality Factor	Unloaded Q	Q _U			8200		
	50 $Ω$ Loaded Q	Q_L			1350		
Temperature Stability	Turnover Temperature	T _O		10	25	35	°C
	Turnover Frequency	f _O	6, 7, 8		f _C		
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A	1, 6		10		ppm/yr
DC Insulation Resistance between Any Two Terminals			5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			19.8		Ω
	Motional Inductance	L _M	5, 7, 9		82		μH
	Motional Capacitance	C _M			3.1		fF
	Shunt Static Capacitance	Co	5, 6, 9		4.1		pF
Test Fixture Shunt Inductance		L _{TEST}	2, 7		63		nH
Lid Symbolization		802 // YWWS			*		
Standard Reel Quantity	Reel Size 7 Inch		500 Pieces / Reel		ces / Reel		
	Reel Size 13 Inch		10		3000 Pie	ces / Reel	

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. NOTES:

- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- The center frequency, f_C, is measured at the minimum insertion loss point, IL_{MIN}, with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST}, is tuned for parallel resonance with C_O at f_C. Typically, $f_{\mbox{\scriptsize OSCILLATOR}}$ or $f_{\mbox{\scriptsize TRANSMITTER}}$ is approximately equal to the resonator $f_{\mbox{\scriptsize C}}$.
- One or more of the following United States patents apply: 4,454,488 and 4,616,197.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Unless noted otherwise, case temperature T_C = +25°C±2°C.
- The design, manufacturing process, and specifications of this device are subject to change without notice.

- Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_O .
- Turnover temperature, T_O, is the temperature of maximum (or turnover) frequency, f_O. The nominal frequency at any case temperature, T_C, may be calculated from: $f = f_O [1 - FTC (T_O - T_C)^2]$. Typically oscillator T_O is approximately equal to the specified resonator T_O.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance CO is the static (nonmotional) capacitance between the two terminals measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05 pF. Transducer parallel capacitance can by calculated as: $C_P \approx C_O - 0.05 \text{ pF}.$
- Tape and Reel Standard Per ANSI / EIA 481.

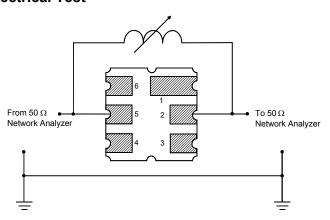


NNOVATOR IN ELECTRONICS		Murata products.		
	ļ			
	<u>.</u>			

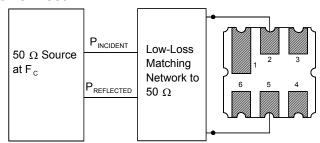
Electrical Connections

The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.

Pin	Connection			
1	NC			
2	Terminal			
3	NC			
4	NC			
5	Terminal			
6	NC			

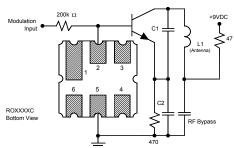

Case	Dim	ensi	ons

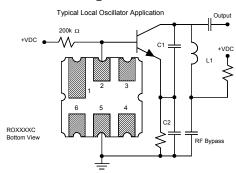
Dimension	mm			Inches		
Dillielision	Min	Nom	Max	Min	Nom	Max
Α	2.87	3.0	3.13	0.113	0.118	0.123
В	2.87	3.0	3.13	0.113	0.118	0.123
С	1.12	1.25	1.38	0.044	0.049	0.054
D	0.77	0.90	1.03	0.030	0.035	0.040
E	2.67	2.80	2.93	0.105	0.110	0.115
F	1.47	1.6	1.73	0.058	0.063	0.068
G	0.72	0.85	0.98	0.028	0.033	0.038
Н	1.37	1.5	1.63	0.054	0.059	0.064
Ī	0.47	0.60	0.73	0.019	0.024	0.029
J	1.17	1.30	1.43	0.046	0.051	0.056

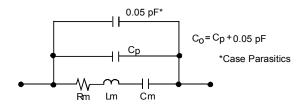

Typical Test Circuit

The test circuit inductor, L_{TEST} , is tuned to resonate with the static capacitance, C_O , at F_C .

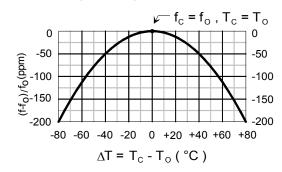
Electrical Test




Power Test


Typical Application Circuits

Typical Low-Power Transmitter Application



Equivalent LC Model

Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

