

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

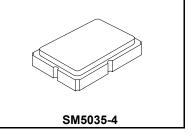
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



RFM products are now Murata products.

RO3112A

433.42 MHz **SAW** Resonator

Designed for 433.92 MHz Superheterodyne Receiver LOs

- Very Low Series Resistance
- Quartz Stability
- · Surface-mount Ceramic Case
- Complies with Directive 2002/95/EC (RoHS)

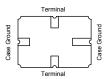
The RO3112A is a one-port surface-acoustic-wave (SAW) resonator packaged in a surface-mount ceramic case. It provides reliable, fundamental-mode guartz frequency stabilization of local oscillators operating at 433.42 MHz. The RO3112A is designed for 433.92 MHz superheterodyne receivers with a 500 kHz IF (Philips UAA3201T). Applications include remote-control and wireless security receivers operating in Europe under ETSI EN 300 220-2.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See Typical Test Circuit)	+0	dBm
DC Voltage Between Terminals (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C
Soldering Temperature (10 seconds / 5 cycles maximum)	260	°C

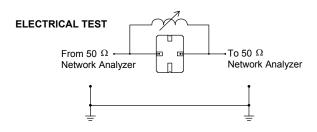
Electrical Characteristics

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency, +25 °C	25 °C Absolute Frequency f _C	0 0 4 5	433.345		433.495	MHz	
	Tolerance from 433.42 MHz	Δf_{C}	2, 3, 4, 5			±75	kHz
Insertion Loss		IL	2, 5, 6		1.4	1.6	dB
Quality Factor	Unloaded Q	Q _U			8000		
	50 Ω Loaded Q	Q_L			1300		
Temperature Stability	Turnover Temperature	T _O	6, 7, 8	10	25	40	°C
	Turnover Frequency	f _O			f _C		
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A	1		≤10		ppm/yr
DC Insulation Resistance bet	ween Any Two Terminals		5	1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}			18.6	25	Ω
	Motional Inductance	L _M	5, 7, 9		54.8		μH
	Motional Capacitance	C _M			2.5		fF
	Transducer Static Capacitance	Co	5, 6, 9		3.7		pF
Test Fixture Shunt Inductance	e	L _{TEST}	2, 7		36.8		nH
Lid Symbolization		658 // YYWWS					

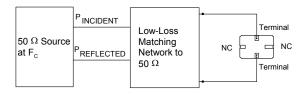

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. NOTES:

- Frequency aging is the change in $f_{\mbox{\scriptsize C}}$ with time and is specified at +65 $^{\circ}\mbox{\scriptsize C}$ or less. Aging may exceed the specification for prolonged temperatures above +65 °C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years. The center frequency, f_C, is measured at the minimum insertion loss point,
- IL_{MIN}, with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST} , is tuned for parallel resonance with C_{O} at f_{C} . Typically, f_{OSCILLATOR} or f_{TRANSMITTER} is approximately equal to the resonator f_C.
- One or more of the following United States patents apply: 4,454,488 and 4,616,197.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment
- Unless noted otherwise, case temperature $T_C = +25 \pm 2$ °C.
- The design, manufacturing process, and specifications of this device are subject to change without notice.

- Derived mathematically from one or more of the following directly 7.
- measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_O . Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O. The nominal frequency at any case temperature, T_C, may be calculated from: $f = f_O [1 - FTC (T_O - T_C)^2]$. Typically, oscillator T_O is approximately equal to the specified resonator To.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the static (nonmotional) capacitance between the two terminals measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05 pF. Transducer parallel capacitance can be calculated as: $C_{P}\approx C_{O}$ - 0.05 pF.
- 10. Packaged in 500PC Tape carrier.

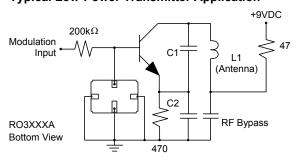

Electrical Connections

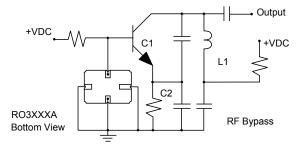
The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.



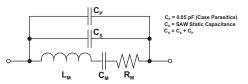
Typical Test Circuit

The test circuit inductor, $L_{TEST}\!_{,}$ is tuned to resonate with the static capacitance, $C_{O}\!_{,}$ at $F_{C}\!_{,}$

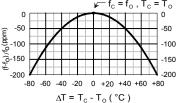

POWER TEST


CW RF Power Dissipation = PINCIDENT - P REFLECTED

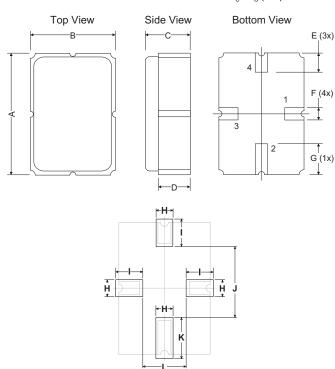
Typical Application Circuits


Typical Low-Power Transmitter Application

Typical Local Oscillator Applications



Equivalent RLC Model



Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

Case

PCB Land Pattern Top View

Dimensions	Millimeters			Inches		
Difficusions	Min	Nom	Max	Min	Nom	Max
Α	4.87	5.00	5.13	0.191	0.196	0.201
В	3.37	3.50	3.63	0.132	0.137	0.142
С	1.45	1.53	1.60	0.057	0.060	0.062
D	1.35	1.43	1.50	0.040	0.057	0.059
E	0.67	0.80	0.93	0.026	0.031	0.036
F	0.37	0.50	0.63	0.014	0.019	0.024
G	1.07	1.20	1.33	0.042	0.047	0.052
Н	-	1.04	-	-	0.041	-
I	-	1.46	-	-	0.058	-
J	-	3.01	-	-	0.119	-
K	-	1.44	-	-	0.057	-
L	-	1.92	-	-	0.076	-