
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Easy Driver Hook-up Guide

Easy Driver Hook-Up Guide SparkFun Wish List

Introduction

The Easy Driver gives you the capability to drive bipolar stepper motors

between 150mA to 700mA per phase.

Materials Required

To follow along with this tutorial, we recommend you have access to the

following materials.

Stepper Motor with Cable
ROB-09238

This is a simple, but very powerful stepper motor with a 4-wire cable a…

Female Headers
PRT-00115

Single row of 40-holes, female header. Can be cut to size with a pair …

SparkFun RedBoard - Programmed with Arduino
DEV-12757

At SparkFun we use many Arduinos and we're always looking for the …

Jumper Wires Premium 6" M/M - 20 AWG (10 Pack)
PRT-11709

Jumper wires are awesome. Just a little bit of stranded core wire with …

You can either solder directly to the Easy Driver, or use headers for

attaching power supplies, motors, etc. The best option for you will be

dependent on your application.

Suggested Reading

Page 1 of 10

If you aren’t familiar with the following concepts, we recommend reviewing

them before beginning to work with the Easy Driver.

� Installing the Arduino IDE

� How to Power Your Project

� Battery Technologies

� How to Solder

� Working with Wire

� Motor Basics

Hardware Overview

The Easy Driver is designed by Brian Schmalz, and is designed around the

A3967 IC. This IC enables you to drive bipolar stepper motors that are 4, 6,

or 8-wire configurations. The board can either work with 3.3V or 5V

systems, making it extremely versatile. Two mounting holes on-board give

the user the option to mechanically stabilize the Easy Driver.

Pin Descriptions

Let’s take a look at all of the pins broken out from the A3967 IC on the Easy

Driver.

Board Top Pins

If you look across the top of the board, you will see several pins.

They function as follows:

� Coil A+ - H-Bridge 2 Output A. Half of connection point for bi-polar

stepper motor coil A.

� Coil A- - H-Bridge 2 Output B. Half of connection point for bi-polar

stepper motor coil A.

� Coil B+ - H-Bridge 1 Output A. Half of connection point for bi-polar

stepper motor coil B.

� Coil B- - H-Bridge 1 Output B. Half of connection point for bi-polar

stepper motor coil B.

� PFD - Voltage input that selects output current decay mode. If PFD >

0.6Vcc, slow decay mode is activated. If PFD < 0.21Vcc, fast decay

mode is activated. Mixed decay occurs at 0.21Vcc< PFD < 0.6Vcc.

� RST - Logic Input. When set LOW, all STEP commands are ignored

and all FET functionality is turned off. Must be pulled HIGH to enable

STEP control.

� ENABLE -Logic Input. Enables the FET functionality within the motor

driver. If set to HIGH , the FETs will be disabled, and the IC will not

drive the motor. If set to LOW , all FETs will be enabled, allowing

motor control.

� MS2 -Logic Input. See truth table below for HIGH/LOW functionality.

� GND - Ground.

� M+ - Power Supply. 6-30V, 2A supply.

Bottom Board Pins

There are also pins across the bottom of the board. Their functions are

described below.

� GND - Ground.

� 5V -Output. This pin can be used to power external circuitry. 70mA

max is required for Easy Driver functionality.

Page 2 of 10

� SLP - Logic Input. When pulled LOW , outputs are disabled and power

consumption is minimized.

� MS1 - Logic Input. See truth table below for HIGH/LOW functionality.

� GND - Ground.

� STEP -Logic Input. Any transition on this pin from LOW to HIGH will

trigger the motor to step forward one step. Direction and size of step

is controlled by DIR and MSx pin settings. This will either be 0-5V or

0-3.3V, based on the logic selection.

� DIR -Logic Input. This pin determines the direction of motor rotation.

Changes in state from HIGH to LOW or LOW to HIGH only take effect

on the next rising edge of the STEP command. This will either be

0-5V or 0-3.3V, based on the logic selection.

Microstep Select Resolution Truth Table

MS1 MS2 Microstep Resolution

L L Full Step (2 Phase)

H L Half Step

L H Quarter Step

H H Eigth Step

Solder Jumpers

There are two solder jumpers on board. These provide the following

features to the user:

� 3/5V - This jumper allows the user to set the configuration of VCC

between 3.3V or 5V. With the jumper open, VCC will be 5V. If the

jumper is closed, VCC is 3.3V.

� APWR - This jumper allows the user to source Vcc on the 5V/GND

pins to external hardware.

Potentiometer

The potentiometer on board is included to allow users the ability to select

the max current provided to the motor. It ranges from 150mA to 750mA.

This will require you to be aware what current range your motor can handle

– check the motor’s data sheet for the current settings.

If you can’t find this information, have no fear – you can still find the proper

setting for the potentiometer. First, set it to the lowest setting of the

potentiometer. Keep in mind that the potentiometer is delicate, so be careful

to not force the potentiometer past the mechanical stops when turning it.

Once you have the motor being driven at a slow, yet steady speed, slowly

Page 3 of 10

turn the potentiometer and pay attention to the motor’s behavior. You

should find a sweet spot where the motor doesn’t skip or jerk between

steps.

Hardware Hookup

Connect Motor Coil Wires

You will need to determine the wire pairs for each coil on the motor you

plan to use. The most reliable method to do this is to check the datasheet

for the motor.

Coil wire diagram from the datasheet our NEMA 16 Stepper Motor with

Cable.

However, if you are using a 4-wire or 6-wire stepper motor, it is still possible

to determine the coil wire pairs without the datasheet.

For a 4-wire motor, take one wire and check its resistance against each of

the three remaining wires. Whichever wire shows the lowest resistance

against the first wire is the pair mate. The remaining two wires should show

similar resistance between the two of them.

For a 6-wire motor, you will need to determine which of three the wires go

together for one coil. Pick one wire, and test this against all other wires.

Two wires should show some resistance between them and the first wire

picked, while the other three will show no connection at all. Once the three

wires for one coil have been determined, find two of the three that show the

highest resistance between them. These will be your two coil wires. Repeat

for the second group of three wires.

Once you have determined the coil wire pairs, you will need to attach them

to the Easy Driver. The first coil pair should be plugged into Coil A+ and

Coil A-, while the second coil pair plugs into Coil B+ and Coil B-. There is

no polarity on the coils, so you don’t need to worry about plugging in a coil

backwards on the board. In our example, we are using a 4-coil motor. The

connections between the Big Easy Driver and motor are as follows.

Easy Driver → Motor

� A+ → Green Wire

� A- → Red Wire

� B+ → Blue Wire

� B- → Yellow Wire

Note: Do not connect or disconnect the motor while the Easy

Driver is powered.

Connect a Power Supply

Page 4 of 10

Once your motor is connected, you can then connect a power supply to the

Big Easy Driver. You can use any kind of power supply (desktop, wall

adapter, battery power, etc.), but verify that whatever choice you go with is

capable of providing up to 2A and falls in the range of 6V to 30V.

Connect the power supply to M+ and GND. REMEMBER to disconnect

the power before connecting/disconnecting your motor.

Connect a Microcontroller

For this example, we will be using the SparkFun RedBoard. However, any

microcontroller that works at 3.3V or 5V logic and has digital I/O with PWM

capability will work for this example.

Here are the following pin connections for our example.

RedBoard → Easy Driver

� D2 → STEP

� D3 → DIR

� D4 → MS1

� D5 → MS2

� D6 → ENABLE

Final Circuit

Once you have everything connected, your circuit should look like the

following:

Arduino Code

Basic Arduino Code Example

Now that you have the hardware hooked up and ready to go, it’s time to get

the code uploaded. First, download the example sketch.

EASY DRIVER DEMO SKETCH DOWNLOAD

For the most up-to-date code available, please check the GitHub repository.

If you need a reminder as to how to install an Arduino library, please check

out our tutorial here.

The first section of the sketch defines all of the pin connections between the

Redboard and the Easy Driver. It also sets these pins as outputs, and puts

them to the proper logic levels to begin driving the motor.

Page 5 of 10

//Declare pin functions on Redboard

#define stp 2

#define dir 3

#define MS1 4

#define MS2 5

#define EN 6

//Declare variables for functions

char user_input;

int x;

int y;

int state;

void setup() {

pinMode(stp, OUTPUT);

pinMode(dir, OUTPUT);

pinMode(MS1, OUTPUT);

pinMode(MS2, OUTPUT);

pinMode(EN, OUTPUT);

resetEDPins(); //Set step, direction, microstep and enable p

ins to default states

 Serial.begin(9600); //Open Serial connection for debugging

 Serial.println("Begin motor control");

 Serial.println();

//Print function list for user selection

 Serial.println("Enter number for control option:");

 Serial.println("1. Turn at default microstep mode.");

 Serial.println("2. Reverse direction at default microstep mo

de.");

 Serial.println("3. Turn at 1/8th microstep mode.");

 Serial.println("4. Step forward and reverse directions.");

 Serial.println();

}

One thing worth noting is that the code also initializes the serial connection

at 9600bps. This enables the user (you!) to control the motor’s functionality

and debug your circuit if needed.

The main loop of the code is pretty simple. The RedBoard scans the serial

port for input from the user. When it is received, it’s compared to the four

possible functions for the motor, which are triggered from user input. If no

valid input is received, the RedBoard prints an error over the serial port.

After the requested function is completed, the pins on the Easy Driver are

reset to the defaults.

Page 6 of 10

//Main loop

void loop() {

while(Serial.available()){

 user_input = Serial.read(); //Read user input and trigge

r appropriate function

digitalWrite(EN, LOW); //Pull enable pin low to allow mo

tor control

if (user_input =='1')

 {

StepForwardDefault();

 }

else if(user_input =='2')

 {

ReverseStepDefault();

 }

else if(user_input =='3')

 {

SmallStepMode();

 }

else if(user_input =='4')

 {

ForwardBackwardStep();

 }

else

 {

 Serial.println("Invalid option entered.");

 }

resetEDPins();

 }

}

The first of the four functions this demo sketch enables is a basic example

to show the motor spinning in one direction. The direction pin is held LOW ,

which for our sketch, we define as the ‘forward’ direction. The sketch then

transitions the step pin HIGH , pauses, and then pulls it LOW . Remember,

the motor only steps when the step pin transitions from LOW to HIGH , thus

we have to switch the state of the pin back and forth. This is repeated 1000

times, and then the RedBoard requests more user input to determine the

next motor activity.

//Default microstep mode function

void StepForwardDefault()

{

 Serial.println("Moving forward at default step mode.");

digitalWrite(dir, LOW); //Pull direction pin low to move "fo

rward"

for(x= 1; x<1000; x++) //Loop the forward stepping enough t

imes for motion to be visible

 {

digitalWrite(stp,HIGH); //Trigger one step forward

delay(1);

digitalWrite(stp,LOW); //Pull step pin low so it can be tr

iggered again

delay(1);

 }

 Serial.println("Enter new option");

 Serial.println();

}

The reverse function works exactly the same as the forward function. The

only difference is that instead of pulling the direction pin LOW , we set it

HIGH , thus switching the direction of the motor spin. One thing you can try

on either of these first two functions is modifying the motor speed by

Page 7 of 10

changing the value in delay() . It is currently set to 1 microsecond, making

each step pulse take 2 microseconds. Increasing the delay will slow down

the motor, while decreasing the delay will speed up the motor.

//Reverse default microstep mode function

void ReverseStepDefault()

{

 Serial.println("Moving in reverse at default step mode.");

digitalWrite(dir, HIGH); //Pull direction pin high to move i

n "reverse"

for(x= 1; x<1000; x++) //Loop the stepping enough times fo

r motion to be visible

 {

digitalWrite(stp,HIGH); //Trigger one step

delay(1);

digitalWrite(stp,LOW); //Pull step pin low so it can be tr

iggered again

delay(1);

 }

 Serial.println("Enter new option");

 Serial.println();

}

The third function shows off the different microstepping functionality that the

Easy Driver provides. To enable the motor to step in 1/8th microsteps, we

must set MS1, and MS2 HIGH . This sets the logic of the board to 1/8th

microstep mode. If you want to have the motor step at a different microstep

mode, change the settings for one of the MS# pins. Check the truth table in

the Hardware Overview section, if you need a reminder of what settings are

enabled by the various pin states.

// 1/8th microstep foward mode function

void SmallStepMode()

{

 Serial.println("Stepping at 1/8th microstep mode.");

digitalWrite(dir, LOW); //Pull direction pin low to move "fo

rward"

digitalWrite(MS1, HIGH); //Pull MS1, and MS2 high to set log

ic to 1/8th microstep resolution

digitalWrite(MS2, HIGH);

for(x= 1; x<1000; x++) //Loop the forward stepping enough t

imes for motion to be visible

 {

digitalWrite(stp,HIGH); //Trigger one step forward

delay(1);

digitalWrite(stp,LOW); //Pull step pin low so it can be tr

iggered again

delay(1);

 }

 Serial.println("Enter new option");

 Serial.println();

}

The final motor function available shows how the motor can change

direction on the fly. The function works just as the forward and reverse

functions above, but switches between states quickly. This example will

step the motor 1000 steps forward and then reverse 1000 steps. This

allows you to precisely move something with the motor in one direction, and

return to the starting position exactly. Precise position control is a great

benefit of stepper motors!

Page 8 of 10

//Forward/reverse stepping function

void ForwardBackwardStep()

{

 Serial.println("Alternate between stepping forward and rever

se.");

for(x= 1; x<5; x++) //Loop the forward stepping enough time

s for motion to be visible

 {

//Read direction pin state and change it

 state=digitalRead(dir);

if(state == HIGH)

 {

digitalWrite(dir, LOW);

 }

else if(state ==LOW)

 {

digitalWrite(dir,HIGH);

 }

for(y=1; y<1000; y++)

 {

digitalWrite(stp,HIGH); //Trigger one step

delay(1);

digitalWrite(stp,LOW); //Pull step pin low so it can be

triggered again

delay(1);

 }

 }

 Serial.println("Enter new option:");

 Serial.println();

}

Additional Examples

In addition to the example here, you can also install the AccelStepper

Library. There are some additional examples with this library that may be

beneficial to you for use with your Easy Driver. Download this and install

the library in your Arduino libraries directory.

You can also find some additional examples on Brian’s Easy Driver page

here.

Resources and Going Further

Going Further

Once you’ve successfully gotten your Easy Driver controlling stepper

motors, it’s time to incorporate this into your own project! Will it be your own

CNC machine? Or perhaps a remote controlled turning art installation? Let

us know!

If you have any feedback, please visit the comments or contact our

technical support team at TechSupport@sparkfun.com.

Additional Resources

Check out these additional resources for more information and other project

ideas.

� Schmalz Haus Easy Driver Homepage

� GitHub Repository

� A3967 Datasheet

� The Great American Tweet Race

Page 9 of 10

� Autonomous Vehicle Competition

� Arduino Controlled Ouija Board

Page 10 of 10

6/24/2015https://learn.sparkfun.com/tutorials/easy-driver-hook-up-guide?_ga=1.264976975.1939456...

	Contact us

