: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Panasonic ideas for life

 1.8 GHZHIGH FREQUENCY, 4 mm LOW PROFILE RELAY

RP RELAYS

FEATURES

Compliance with RoHS Directive

5. Self-clinching terminal also available

TYPICAL APPLICATIONS

- Switching signal of measuring equipment
- All types of compact wireless devices

If you wish to use in applications with low level loads or with high frequency switching, please consult us.

ORDERING INFORMATION

TYPES

Contact arrangement	Nominal coil voltage	Standard PC board terminal	
		Single side stable	Self-clinching terminal Single side stable
		Part No.	Part No.
1 Form C	1.5 V DC	RP1-1.5V	RP1-H-1.5V
	3 VDC	RP1-3V	RP1-H-3V
	4.5 V DC	RP1-4.5V	RP1-H-4.5V
	5 V DC	RP1-5V	RP1-H-5V
	6 VDC	RP1-6V	RP1-H-6V
	9 VDC	RP1-9V	RP1-H-9V
	12 VDC	RP1-12V	RP1-H-12V
	24 VDC	RP1-24V	RP1-H-24V

Standard packing: 50 pcs . in an inner package (tube); 1,000 pcs. in an outer package

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Coil resistance $[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	16Ω	140mW	$150 \% \mathrm{~V}$ of nominal voltage
3 V DC			46.7 mA	64.3Ω		
4.5 V DC			31.0 mA	145 ת		
5 V DC			28.1 mA	178Ω		
6 V DC			23.3 mA	257 ת		
9 V DC			15.5 mA	579Ω		
12 VDC			11.7 mA	1,028 Ω		
24 VDC			11.3 mA	2,133 Ω	270mW	$120 \% \mathrm{~V}$ of nominal voltage

*Pulse drive (JIS C5442)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form C
	Initial contact resistance, max.		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6V DC 0.1A)
	Contact material		Stationary: Ag + Au clad, Movable: AgPd
Rating	Contact rating		0.1A 30V DC (resistive load); Contact carrying power: 3W (Max. 1.2GHz); 1W (Max. 1.8GHz); Contact switching power: 1W (Max. 1.8GHz)
	Nominal operating power (single side stable type)		140 mW (1.5 to 12 V DC), 270 mW (24V DC)
High frequency characteristics (Initial) (Impedance 50Ω)	V.S.W.R.		Max. 1.2 (at 1GHz), Max. 1.3 (at 1.8GHz)
	Insertion loss (without D.U.T. board's loss)		Max. 0.5 dB (at 1GHz), Max. 1 dB (at 1.8 GHz)
	Isolation		Min. 15 dB (at 1 GHz), Min. 10 dB (at 1.8 GHz)
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Temperature rise (at $20^{\circ} \mathrm{C}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil, contact carrying power: 1W/at 1.8GHz)
	Operate time (at $20^{\circ} \mathrm{C}$)		Max. 3ms (Approx. 1.5ms) (Nominal operating voltage applied to the coil, excluding contact bounce time.)
	Release time (at $20^{\circ} \mathrm{C}$)		Max. 2ms (Approx. 1ms) (Nominal operating voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $500 \mathrm{~m} / \mathrm{s}^{2}$ \{Approx. 50 G$\}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ \{Approx. 100G\} (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 5×10^{6} (at 180 cpm)
	Electrical		Min. 10^{5} (0.1A 30V DC resistive load, 1W (at 1.8GHz, V.S.W.R. max. 1.3 at 20 cpm)
Conditions	Conditions for operation, transport and storage*		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm (at rated load)
Unit weight			Approx. 1 g .04 oz

Note: *The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to [6] AMBIENT ENVIRONMENT in GENERAL APPLICATION GUIDELINES.

REFERENCE DATA

1. High frequency characteristics

Sample: RP1-6V
Measuring method: Impedance 50Ω Measuring tool:

- Insertion loss

- Isolation

2. Coil temperature rise

Sample: RP1-6V; No. of samples: $\mathrm{n}=5$
Carrying current: 0.1 A
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

4. Mechanical life

Sample: RP1-5V; No. of samples: $\mathrm{n}=8$

- Change of pick-up, drop-out voltage

6. Ambient temperature characteristics

Sample: RP1-6V; No. of samples: $\mathrm{n}=5$
3. Operate/release time

Sample: RP1-9V; No. of samples: $\mathrm{n}=50$

- With diode

5. Electrical life (0.1 A 30 V DC)

Sample: RP1-6V; No. of samples: $\mathrm{n}=6$

- Change of pick-up/drop-out voltage

7. Contact resistance distribution (initial) Sample: RP1-12V; No. of samples: $\mathrm{n}=25$

8.-(3) Influence of adjacent mounting Sample: RP1-12V; No. of samples: $\mathrm{n}=6$

8. High frequency switching test (1.2 GHz, 1 W)

Sample: RP1-6V; No. of samples: $\mathrm{n}=6$
Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

- Change of pick-up/drop-out voltage

- Change of contact resistance

DIMENSIONS (mm inch) The CAD data of the products with a CAD Data mark can be downloaded from: http://panasonic-electric-works.net/ac

CAD Data

Standard PC board terminal

Self-clinching terminal

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

Deenergized condition

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 20 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RP relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Packing direction

Relays are packed in a tube with the orientation stripe (PIN NO. 1) toward the green stopper.

5. Automatic mounting

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.

For general cautions for use, please refer to the "General Application Guidelines".

Chucking pressure* in the direction A: $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less Chucking pressure* in the direction B : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less Chucking pressure* in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Please chuck the TWIW portion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

*Value of chucking pressure is shown by the value of weight pressed on the portion (4 mm .157 inch dia.).

6. Soldering

Preheat according to the following conditions.

Temperature	$120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ or less
Time	Within 2 minute

Soldering should be done at $260 \pm 5^{\circ} \mathrm{C}$
$500 \pm 9^{\circ} \mathrm{F}$ within 6 s .

