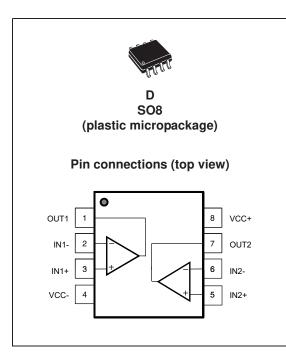
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

RT2904WH

RobuST low-power dual operational amplifier

Features

- Frequency compensation implemented internally
- Large DC voltage gain: 100 dB
- Wide bandwidth (unity gain): 1.1 MHz (temperature compensated)
- Very low supply current/amplifier, essentially independent of supply voltage
- Low input bias current: 20 nA (temperature compensated)
- Low input offset current: 2 nA
- Input common-mode voltage range includes
 negative rail
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0 V to (V_{CC+}) 1.5V

Datasheet - production data

- Intended for use in aerospace and defense applications:
 - Dedicated traceability and part marking
 - Approval documents available for production parts
 - Adapted extended life time and obsolescence management
 - Extended product change notification process
 - Designed and manufactured to meet sub ppm quality goals
 - Advanced mold and frame designs for superior resilience to harsh environments (acceleration, EMI, thermal, humidity)
 - Extended screening capability on request
 - Single fabrication, assembly, and test site
 - Temperature range (-40 °C to 150 °C)

Applications

- Aerospace and defense
- Harsh environments

Description

This circuit consists of two independent, high gain operational amplifiers with frequency compensation implemented internally. It is designed specifically for aerospace and defense applications. The circuit operates from a single power supply over a wide range of voltages. Low power supply drain is independent of the magnitude of the power supply voltage.

In linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from a single power supply.

1/13

This is information on a product in full production.

Contents

1	Absolute maximum ratings and operating conditions
2	Schematic diagram 4
3	Electrical characteristics5
4	Package information 10 4.1 SO8 package information
5	Ordering information
6	Revision history

1

Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC} ⁺	Supply voltage	32	
V _{id}	Differential input voltage	-0.3 to V _{CC} +0.3	V
V _{in}	Input voltage	-0.3 to V _{CC} +0.3	
	Output short-circuit to ground ⁽¹⁾	40	mA
Тj	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction to ambient ⁽²⁾	125	°C/W
R _{thjc}	Thermal resistance junction to case ⁽²⁾	40	C/VV
l _{in}	Input current ⁽³⁾	5	mA
T _{stg}	Storage temperature range	-65 to 150	°C
	HBM: human body model ⁽⁴⁾	2	kV
ESD	MM: machine model ⁽⁵⁾	200	V
	CDM: charged device model ⁽⁶⁾	1.5	kV

Table 1. Absolute maximum ratings

 Short-circuits from the output to V_{CC} can cause excessive heating if V_{CC}⁺ > 15 V. The maximum output current is approximately 40 mA, independent of the magnitude of V_{CC}. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.

- 2. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
- This input current only exists when the voltage values applied on the inputs is beyond the supply voltage line limits. This is not destructive if the current does not exceed 5 mA as indicated, and normal output is restored for input voltages above -0.3 V.
- Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- 5. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Symbol	Parameter	Value	Unit
V _{CC} ⁺	Supply voltage	3 to 30	V
T _{oper}	Operating free-air temperature range	-40 to 150	°C
V _{icm}	Input common mode voltage range $(V_{CC}^+=+30V)^{(1)}$ $T_{amb} = 25 \text{ °C}$ $T_{min} \leq T_{amb} \leq T_{max}$	0 to (V _{CC} ⁺) - 1.5 0 to (V _{CC} ⁺) - 2	V

Table 2. Operating conditions

1. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC}^+ -1.5 V, but either or both inputs can go to +32 V without damage.

2 Schematic diagram

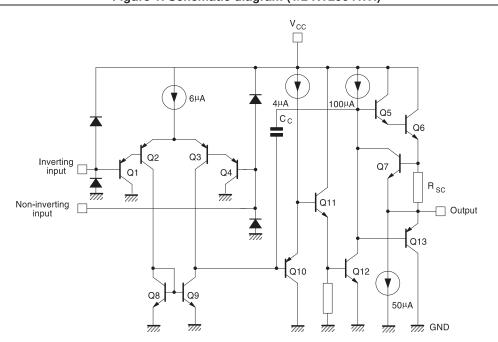


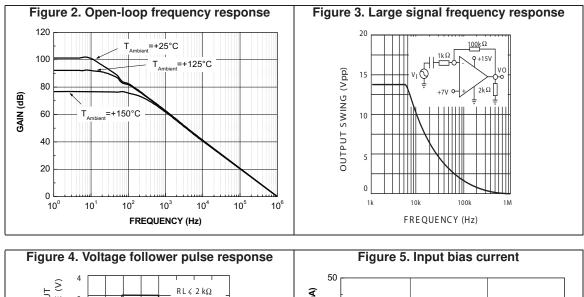
Figure 1. Schematic diagram (1/2 RT2904WH)

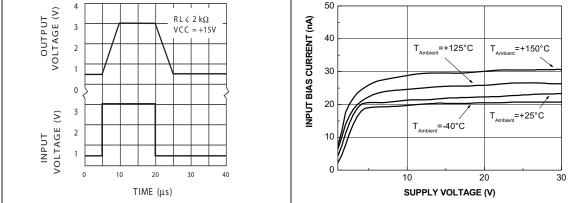
3 Electrical characteristics

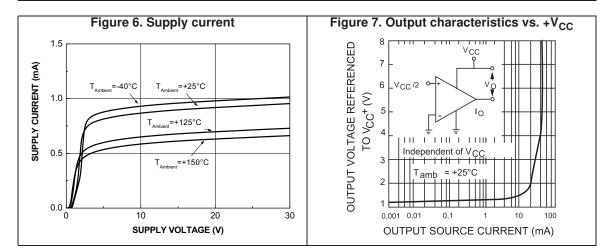
(unless otherwise specified)					
Symbol	Parameter	Min.	Тур.	Max.	Unit
V	Input offset voltage ⁽¹⁾		2	7	m)/
V _{io}	$T_{min} \le T_{amb} \le T_{max}$			9	mV
I.	Input offset current		2	30	
l _{io}	$T_{min} \le T_{amb} \le T_{max}$			40	nA
I.,	Input bias current ⁽²⁾		20	150	ЦА
l _{ib}	$T_{min} \le T_{amb} \le T_{max}$			200	
	Large signal voltage gain				
A _{vd}	V_{CC}^{+} = 15 V, R _L =2 kΩ, V _o = 1.4 V to 11.4 V	50	100		V/mV
	$T_{min} \le T_{amb} \le T_{max}$	2.5			
	Supply voltage rejection ratio				15
SVR	V_{CC}^+ = 5 to 30 V, $R_S \le 10 \text{ k}\Omega$ $T_{min} \le T_{amb} \le T_{max}$	65 65	100		dB
I _{CC}	Supply current, all amps, no load $V_{CC}^+ = 5 V$		0.7	1.2	mA
100	$T_{min} \le T_{amb} \le T_{max}$, $V_{CC} = 30 V$		0.7	2	117.
	Common-mode rejection ratio ($R_{S} = 10 \text{ k}\Omega$)	70	85		
CMR	$T_{min} \le T_{amb} \le T_{max}$	60			dB
	Output short-circuit current				
Isource	$V_{CC}^{+}= 15 \text{ V}, V_{o} = 2 \text{ V}, V_{id} = 1 \text{ V}$	20	40	60	mA
	$T_{min} \le T_{amb} \le T_{max}$	10			
	Output sink current				
	$V_0 = 2 V, V_{CC}^+ = 5 V$	10	20		mA
I _{sink}	$T_{min} \le T_{amb} \le T_{max}$	5			
	$V_{O} = 0.2 V, V_{CC}^{+} = 15 V$	12	50		μA
	$T_{min} \le T_{amb} \le T_{max}$	10			P. I
	Output voltage swing ($R_1 = 2 k\Omega$)	0		(V _{CC} ⁺) - 1.5	
V _{OPP}	$T_{min} \le T_{amb} \le T_{max}$	0		(V _{CC} ⁺) - 2	
	High level output voltage (V_{CC}^+ = 30 V)				
	$R_L = 2 k\Omega$	26	27		V
V _{OH}	$T_{min} \le T_{amb} \le T_{max}$	26			
	$R_{I} = 10 k\Omega$	27	28		
	$T_{min} \le T_{amb} \le T_{max}$	27			
	Low level output voltage ($R_L = 10 \text{ k}\Omega$)		5	20	
V _{OL}	$T_{min} \le T_{amb} \le T_{max}$			20	mV

Table 3. V_{CC}^+ = 5V, V_{CC}^- = ground, V_o = 1.4 V, T_{amb} = 25 °C (unless otherwise specified)

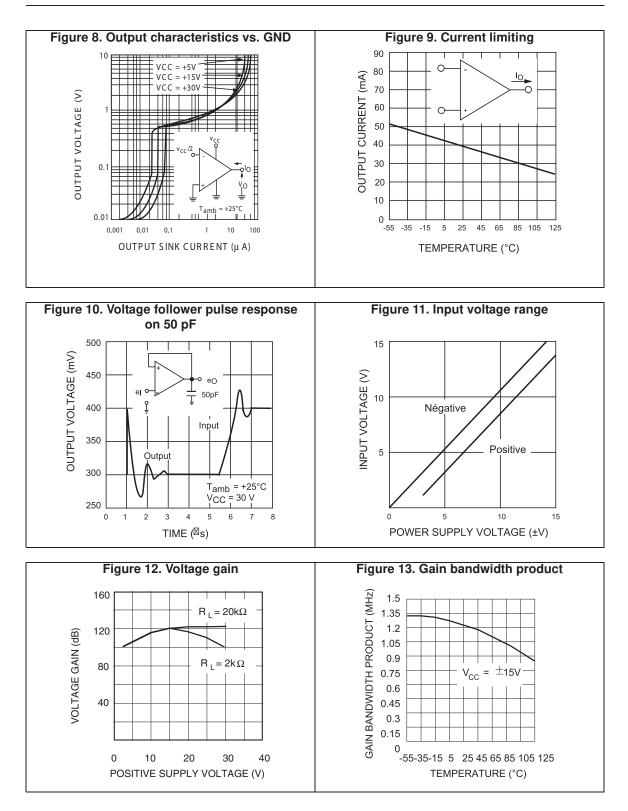
Symbol	Parameter		Тур.	Max.	Unit
SR	Slew rate (unity gain) V_{CC}^+ = 15 V, Vi = 0.5 to 3 V, R _L = 2 kΩ, C _L = 100 pF, $T_{min} \le T_{amb} \le T_{max}$		0.6		V/µs
GBP	0.7 0.45	1.1		MHz	
THD	THD Total harmonic distortion $f = 1 \text{ kHz}, A_V = 20 \text{ dB}, R_L = 2 \text{ k}\Omega, V_o = 2 \text{ V}_{pp},$ $C_L = 100 \text{ pF}, \text{ V}_{CC} = 30 \text{ V}$				%
e _n	e_n Equivalent input noise voltage, f = 1 kHz, R _S = 100 Ω V _{CC} = 30 V		55		nV/√Hz
DV _{io} Input offset voltage drift			7	30	µV/°C
DI _{io}	I _{io} Input offset current drift		10	300	pA/°C
V ₀₁ /V ₀₂	Channel separation ⁽³⁾ 1 kHz \leq f \leq 20 kHz		120		dB

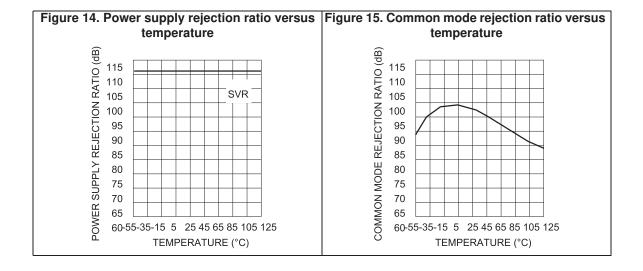

Table 3. V_{CC}^+ = 5V, V_{CC}^- = ground, V_o = 1.4 V, T_{amb} = 25 °C (unless otherwise specified) (continued)


1. $V_{O} = 1.4 \text{ V}, \text{ R}_{S} = 0 \ \Omega, 5 \text{ V} < V_{CC}^{+} < 30 \text{ V}, 0 \text{ V} < V_{ic} < (V_{CC}^{+}) - 1.5 \text{ V}.$

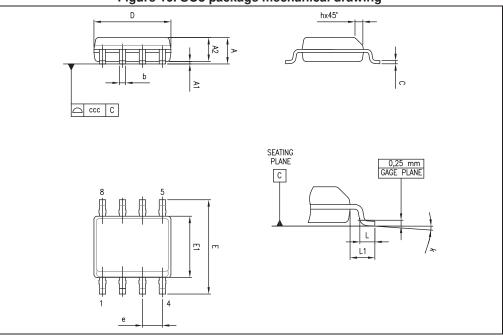

2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output, so there is no change in the loading charge on the input lines.

3. Due to the proximity of external components, ensure that stray capacitance does not cause coupling between these external parts. Typically, this can be detected because this type of capacitance increases at higher frequencies.





DocID026931 Rev 1


4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

10/13

4.1 SO8 package information

Figure 16. SO8 package mechanical drawing

Table 4. SO8 package mechanical data

				nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1	1	1.04			0.040	
k	1°		8°	1°		8°
ccc			0.10			0.004

DocID026931 Rev 1

5 Ordering information

Table 5	5. Order	codes
---------	----------	-------

Order code Temperature range		Package	Packing	Marking
RT2904WHYDT	-40 °C to 150 °C	SO8	Tape and reel	R2904WHY

6 Revision history

Table 6. Document revision history

Date	Revision	Changes
08-Oct-2014	1	Initial release.

 $\overline{\mathbf{N}}$

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

DocID026931 Rev 1