mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

RICHTEK®

SPS Secondary-Side CC/CV Controller

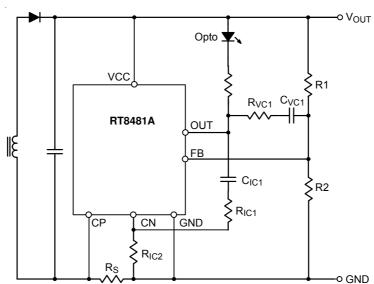
General Description

The RT8481A is a secondary-side CC/CV controller for SPS applications. It integrates a Constant Current (CC) regulating amplifier, a Constant Voltage (CV) regulating amplifier, and 2 precision reference voltages.

The CC regulating amplifier is featured with an extended input common mode voltage below GND level to insure the performance of low-side current sense, and a very low input offset voltage to guarantee the sensing accuracy. A 60mV reference voltage is internally connected between the inverting input of the CC regulating amplifier and the CP pin. The non-inverting input is the CN pin, at which the voltage will be regulated 60mV higher than that at the CP pin. The inverting input pin CP is equiped with –5V antireverse immunity.

The CV regulating amplifier with low input offset voltage is biased with a 2.5V reference voltage at the inverting input. The non-inverting input is the FB pin, at which the voltage will be regulated with 2.5V from GND. The CC and CV amplifiers share an open-collector output pin to minimize application circuit.

The RT8481A is available in the SOT-23-6 package.


Features

- Secondary-Side Constant Voltage (CV) and Constant Current (CC) Control
- 4.75V to 50V Operation Voltage Range
- ±1% Output Voltage Accuracy at Full Temperature Range
- 0.6mA Quiescent Current
- Smooth Transition Between CC and CV Control Loops
- -5V Negative Voltage Tolerance at CP pin

Applications

- Battery Chargers
- AC/DC Adaptors
- LED Drivers

Simplified Application Circuit

Pin Configurations

(TOP VIEW)

VCC OUT CP

GND FB

SOT-23-6

CN

Ordering Information

RT8481A

Package Type E : SOT-23-6 —Lead Plating System G : Green (Halogen Free and Pb Free)

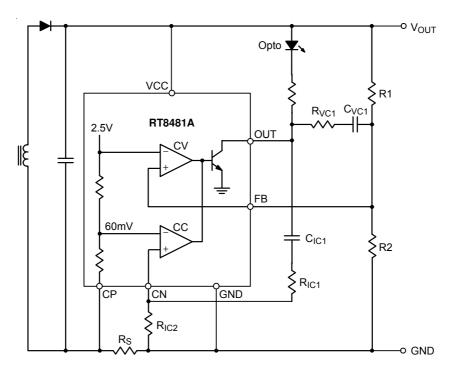
Note :

Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

3Y= : Product Code DNN : Date Code


Functional Pin Description

Functional Pin Description						
Pin No.	Pin Name	Pin Function				
1	CN	Non-inverting Input of the CC Regulating Amp. It has 60mV offset from the CP pin. The CN pin should be connected to the "current-in" node of the current sensing resistor, Rs.				
2	GND	Ground.				
3	FB	Non-inverting Input of the CV Regulating Amp. The pin should be connected to the mid-point of a resistor divider from "Secondary Side VOUT" (usually the VCC) to GND.				
4	СР	Inverting Input of the CC Regulating Amp with –60mV offset from CN pin. The CP pin should be connected to the "current-out" node of the current sensing resistor.				
5	OUT	Common Open-collector Output of CC and CV Regulating Amps. The pin sinks a regulated current and driver the opto-coupler to transmit the error signal to primary-side.				
6	VCC	Supply Voltage Input. A $0.1 \mu F$ bypass capacitor should be connected between VCC and GND.				

Copyright ©2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

2

Function Block Diagram & Typical Application Circuit

Operation

RICHTEK

The available input voltage range is from 4.75V to 50V for the RT8481A. An internal 2.5V reference voltage is generated from VCC input power. The RT8481A can be used to monitor the transformer secondary-side output voltage by the CV control loop and regulate the output current by the CC control loop at the same time.

The transformer secondary-side output voltage can be monitored by the FB pin voltage. The sensed FB pin voltage is compared with the 2.5V internal reference. When the FB pin voltage is higher than 2.5V, the OUT pin will sink more current at the external opto-coupler and instruct the controller at primary-side to adjust the output voltage.

The output current can be regulated by the voltage across the CN and CP pins through the current sense resistor connected between the CN and CP pins. The voltage difference between CN and CP pins is compared with the 60mV internal reference. When the voltage difference between CN and CP pins is greater than 60mV, the OUT pin will sink more current at the external opto-coupler and instruct the controller at primary-side to adjust the output current.

Absolute Maximum Ratings (Note 1)

Supply Input Voltage, V _{CC} CP	
• CN	0.3V to 1V
• FB	0.3V to V _{CC}
• OUT	0.3V to 50V
OUT Current	20mA to 20mA
 Power Dissipation, P_D @ T_A = 25°C 	
SOT-23-6	0.41W
Package Thermal Resistance (Note 2)	
SOT-23-6, θ _{JA}	243.3°C/W
Lead Temperature (Soldering, 10 sec.)	
Junction Temperature	150°C
Storage Temperature Range	65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV
MM (Machine Model)	200V

Recommended Operating Conditions (Note 4)

Supply Input Voltage, V _{CC} (Note 5)	4.75 to 50V
Junction Temperature Range	–40°C to 125°C
Ambient Temperature Range	–40°C to 85°C

Electrical Characteristics

(V_{CC} = 12V, T_A = 25°C, unless otherwise specified)

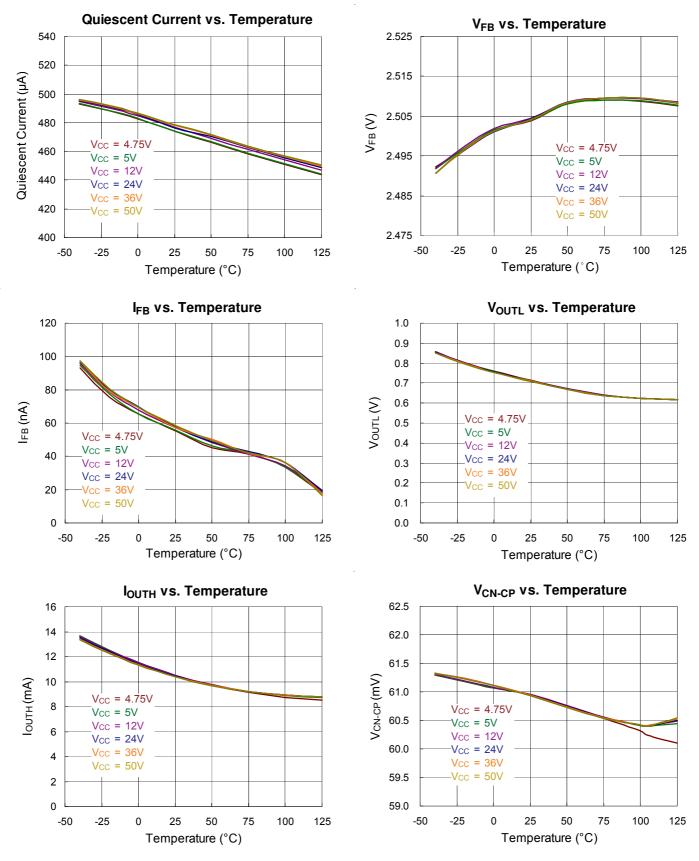
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Device Supply							
	Icc	CV Close Loop, $V_{CN} = V_{CP} = 0V$		500	600	μΑ	
Quiescent Current		CV Close Loop, $V_{CN} = V_{CP} = 0V$, T _A = -25°C to 105°C			800		
Voltage Control Loop OP Amp							
Transconductance	GMv	V _{CC} = 4.75V to 45V		1		S	
Power Supply Rejection Rate	PSRR	V _{CC} = 4.75V to 45V		60		dB	
	V _{FB}	$V_{CN} = V_{CP} = 0V$	2.487	2.5	2.513	v	
FB Voltage		$V_{CN} = V_{CP} = 0V$, $T_A = -25^{\circ}C$ to $105^{\circ}C$	2.475		2.525		
FB Line Regulation dV _{LINE-FB} V _{CN}		$V_{CN} = V_{CP} = 0V, V_{CC} = 4.75V \text{ to } 45V$		0.2		%	
ED Input Digg Current	I _{FB}	V _{FB} = 2.4 to 2.6V			100	nA	
FB Input Bias Current		V_{FB} = 2.4 to 2.6V, T_A = -25°C to 105°C			200		
Current Control Loop							
Transconductance		V _{CC} = 4.75V to 45V		6		S	
	e V _{CN-CP}	V _{FB} = 2.4V	59	61	63	mV	
CN – CP Voltage		$T_A = -25^{\circ}C$ to $105^{\circ}C$	58		64		

RICHTEK

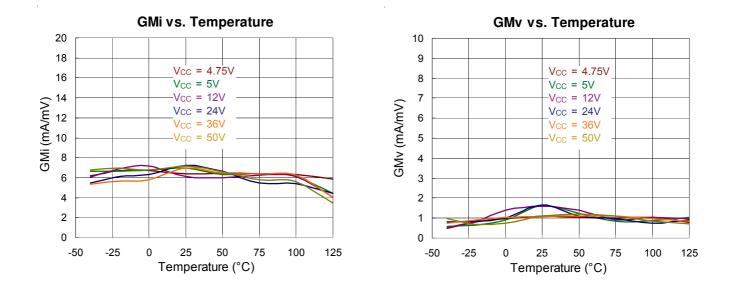
Parameter	Symbol	Test Condition		Тур	Max	Unit	
CN – CP Line Regulation	dV _{LINE} -CN-CP	V_{FB} = 2.4V, V_{CC} = 4.75V to 45V		0.2		%/V	
		Close Loop			100	nA	
CN Input Bias Current	ICN	Close Loop, $T_A = -25^{\circ}C$ to $105^{\circ}C$			200		
Output Stage							
OUT Maximum Sink	Іоитн	V _{OUT} = 1.5V		8		mA	
Current		V _{OUT} = 1.5V, T _A = -25°C to 105°C		8			
	VOUTL	I _{OUT} = 2mA	1 1.		1.2	V	
OUT Minimum Voltage		$I_{OUT} = 2mA, T_A = -25^{\circ}C \text{ to } 105^{\circ}C$			1.5	v	

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. θ_{JA} is measured at $T_A = 25^{\circ}C$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7.


Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.


Note 5. RT8481A starts regulation at V_{CC} \geq 4.5V, and meets all parameter specs at V_{CC} \geq 4.75V.

Typical Operating Characteristics

RICHTEK

Application Information

Output Voltage Setting

The voltage control loop is controlled via the first transconductance operational amplifier. An optocoupler which is directly connected to the output and an external resistor bridge is connected between the output positive line and the ground reference. The middle point is to be connected to the FB pin of RT8481A, where R2 is the upper resistor and R1 the lower resistor of the bridge. The relationship between R2 and R1 is shown below :

$$V_{OUT} = V_{FB} \times \frac{(R1 + R2)}{R2}$$

R1 = R2 × $\frac{(V_{OUT} - V_{FB})}{V_{FB}}$

where V_{OUT} is the desired maximum output voltage and V_{FB} is the feedback voltage (2.5V typ). When under constant voltage control mode, the output voltage is fixed due to the R1/R2 resistor bridge. To avoid discharge of the load, the resistor bridge R1, R2, should be highly resistive. For this type of application a total value of 100k Ω (or more) would be appropriate for the resistors R1 and R2.

As an example, with R1 = 80k Ω and R2 = 20k $\Omega,$ V_{OUT} = 12.5V

Output Current Setting

The current control loop is controlled via the second transconductance operational amplifier. An optocoupler and the sense resistor, Rs, is placed in series on the output negative line. V_{CN-CP} threshold is achieved externally by a resistor bridge tied to the Vref voltage reference. Its middle point is tied to the positive input of the current control operational amplifier and its foot is to be connected to the lower potential point of the sense resistor. The resistors of the bridge are matched to provide the best precision. With V_{CN-CP} and Rs, the expected output current I_{OUT} can be obtained as below equation.

$$I_{OUT} = \frac{V_{CN-CP}}{R_S}$$

As an example, with $R_S = 200 m\Omega$

 V_{CN-CP} = 60mV, I_{OUT} = 300mA

where $I_{\mbox{\scriptsize OUT}}$ is the desired maximum output current, and

 V_{CN-CP} the threshold voltage for the current control loop. Note that R_{SENSE} resistor should be chosen taking into account its maximum power dissipation (P_{LIM}) during full load operation.

Compensation

Both the voltage control trans-conductance amplifier and the current control trans-conductance amplifier can be fully compensated. The output and negative inputs are directly accessible for external compensation components, as shown in the Typical Application Circuit.

The typical component values for the compensation network of voltage control loop is $C_{VC1} = 2.2nF$ and $R_{VC1} = 22k\Omega$. The typical component values for the compensation network of current control loop is $C_{IC1} = 2.2nF$, $R_{IC1} = 22k\Omega$ and $R_{IC2} = 1k\Omega$. However, in many application conditions, the current control loop can be stable even without compensation network ($R_{IC2} = 0$, no C_{IC1} nor R_{IC1}).

When the voltage control loop is used as the voltage limit protection or the current control loop is used as the current limit protection, no compensation network is needed for the protecting control loop.

A resistor, R_{OPT} , must be connected in series with the opto-coupler since it is part of the compensation network. Although the value of R_{OPT} is not critical, it's recommended to be in the range from $0.33k\Omega$ to $(V_{OUT} - 2) / (0.005) \Omega$.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

8

RICHTEK

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For SOT-23-6 packages, the thermal resistance, θ_{JA} , is 243.3°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_A = 25$ °C can be calculated by the following formula :

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})}$ = (125°C - 25°C) / (243.3°C/W) = 0.41W for SOT-23-6 package

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . The derating curve in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

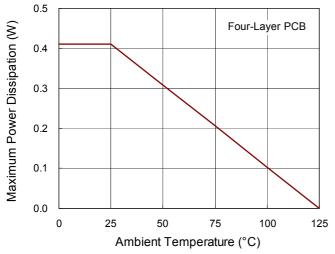


Figure 1. Derating Curve of Maximum Power Dissipation

Layout Consideration

For the best performance of the RT8481A, the following PCB Layout guidelines must be strictly followed.

- Place the R_{SENSE} resistor as close to IC as possible.
- Keep the input/output traces as wide and short as possible.

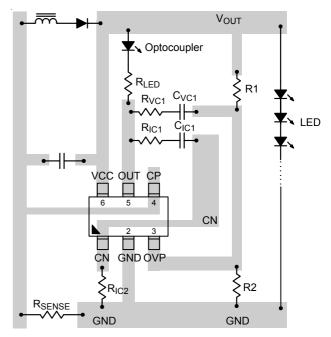
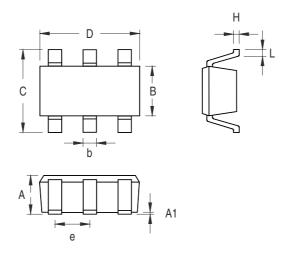



Figure 2. PCB Layout Guide

Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Мах	
А	0.889	1.295	0.031	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.250	0.560	0.010	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

SOT-23-6 Surface Mount Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.