

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Switch-Mode Single Cell Li-Ion Charger with USB-OTG

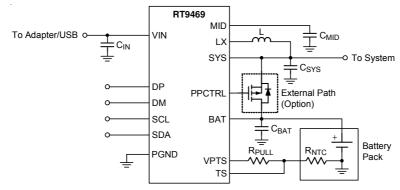
General Description

The RT9469 is a switch-mode single cell Li-lon/Li-Polymer battery charger for portable applications. It integrates a synchronous PWM controller, power MOSFETs, input current sensing and regulation, and high accuracy voltage regulation and charge termination circuits. Besides, the charging current is regulated through the integrated sensing resistors. The RT9469 also features USB On-The-Go (OTG) support.

The RT9469 optimizes the charging task by using a control algorithm to vary the charge rate via different modes, including pre-charge mode, fast charge mode, and constant voltage mode. The key charge parameters are programmable via the I²C interface. The RT9469 resumes the charge cycle whenever the battery voltage falls below an internal recharge threshold, and automatically enters sleep mode when the input power supply is removed.

Other features include under-voltage protection, overvoltage protection, thermal regulation and reverse leakage protection.

The RT9469 is available in the small WL-CSP-25B 2.52x2.52 packages.


Applications

- Cellular Telephones
- Personal Information Appliances
- Tablet PC, Power Bank
- Portable Instruments

Features

- High Accuracy Voltage/Current Regulation
- Average Input Current Regulation (AICR): 0.1/0.15/ 0.5/ to 3A per 0.1A
- Minimum Input Voltage Regulation
 - ▶ For 5V Adapter: 4V/4.25V/4.5V/4.75V
 - ▶ For 9V Adapter : 7V/7.5V/8V/8.5V
- Charge Current Regulation Accuracy: ±5%
- Charge Voltage Regulation Accuracy : ±1% (0 to 85°C)
- Integrated Power MOSFETS for up to 2.275A Charge Rate
- Support USB Charging Detection
- Battery Temperature Sensing
- Synchronous 0.75/1.5MHz Fixed Frequency PWM Controller with Up to 95% Duty Cycle
- Reverse Leakage Protection to Prevent Battery Drainage
- Thermal Regulation and Protection
- Over-Temperature Protection
- Input Over-Voltage Protection
- IRQ Output for Communication with I2C
- Automatic Charging
- RoHS Compliant and Halogen Free

Simplified Application Circuit

Copyright@2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Ordering Information

Pin Configuration

RT9469□

-Package Type

WSC: WL-CSP-25B 2.52x2.52 (BSC)

Note:

Richtek products are:

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

1C YM DNN 1C : Product Code YMDNN : Date Code A1 A2 A3 A4 A5 VIN VIN MID IRQ CEB

B1 B2 B3 B4 B5 LX LX BOOT OTG SCL

C1 C2 C3 C4 C5 PGND PGND VDDP AGND SDA

D1 D2 D3 D4 D5 SYS SYS STAT TS DP

E1 E2 E3 E4 E5

(TOP VIEW)

WL-CSP-25B 2.52x2.52 (BSC)


Functional Pin Description

Pin No.	Pin Name	Pin Description
A1, A2	VIN	Power input.
A3	MID	Connection point between reverse blocking MOSFET and high-side switching MOSFET.
A4	IRQ	IRQ output node.
A5	CEB	Enable control input. Low active. With internal 102kΩ pull low resistor.
B1, B2	LX	Switch node. Connect to an external inductor.
В3	воот	Bootstrap supply for high-side MOSFET. Connect a capacitor between BOOT and LX.
B4	OTG	Setting input pin OTG boost mode. With internal 102kΩ pull low resistor.
B5	SCL	Clock input for I ² C. Open-drain output. Connect a pull-up resistor.
C1, C2	PGND	Power ground for switching charger.
C3	VDDP	Internal power for power stage.
C4	AGND	Analog ground.
C5	SDA	Data input for I ² C. Open drain output. Connect a pull-up Resistor.
D1, D2	SYS	System voltage regulator node.
D3	STAT	Charge status indicator (Open drain).
D4	TS	Battery temperature detection pin.
D5	DP	USB charger type detection pin.
E1, E2	BAT	Charging current output node. Battery charging voltage regulation feedback pin with power Path.
E3	PPCTRL	Power path control pin (Connect to external P-MOSFET gate).
E4	VPTS	Supply voltage for battery temperature detection.
E5	DM	USB charger type detection pin.

Copyright ©2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Functional Block Diagram

Operation

The RT9469 is an integrated single cell Li-ion battery switching charger with power path controller.

Base Circuits

Base circuits provide the internal power, VDDP and reference voltage and bias current.

Protection Circuits

The protection circuits include the VINOVP, VINUVLO, BATOVP and OTP circuits. The protection circuits turn off the charging when the input power or die temperature is in abnormal level.

Buck Regulator for charging and Boost Regulator as OTG

The multi-loop controller controls the operation of charging process and current supply to the system. It also controls the circuits as a Boost converter for OTG applications.

Battery Detection

The RT9469 is capable of doing the battery absence detection. The detection protects the charger when battery is removed accidentally.

Adapter Detection

If the poor input power source is connected to the RT9469, the operation is shut down by the adapter detection.

Power Path Management and Control

Once the battery voltage increase to a defined system minimum regulation voltage, the internal path between SYS and BAT will be fully turned on (Cool PPM operation). That is, a better charging efficiency can be derived. When end of charge occurs, the charing stops and the internal path will be off.

USB Charger Detection

The RT9469 detects and distinguishes SONY, APPLE NIKON and USB Charger (Standard Charger Port, Charging Downstream Port and Dedicated Charger Port) via DP and DM pins.

TS Detection

The RT9469 detects the temperature of the battery pack via TS and VPTS pins. The VPTS pin provides a constant voltage source used to drive the voltage divider composed of a pulled-high resister and a NTC resister. The RT9469 reports the sensing results via IRQ and status bits for COLD, COOL, WARM and HOT.

I²C Controller

The key parameters of charging and OTG are programmable through $\rm I^2C$ commands.

Copyright ©2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Absolute Maximum Ratings (Note 1)

• Supply Input Voltage, VIN	0.3V to 28V
• MID, BOOT	0.3V to 28V
• LX	0.3V to 20V
• MID – VIN, BOOT – LX	0.3V to 6V
• Other Pins	0.3V to 6V
 Power Dissipation, P_D @ T_A = 25°C 	
WL-CSP-25B 2.52x2.52 (BSC)	- 3.11W
Package Thermal Resistance (Note 2)	
WL-CSP-25B 2.52x2.52 (BSC), θ_{JA}	- 32.1°C/W
• Lead Temperature (Soldering, 10 sec.)	- 260°C
• Junction Temperature	
Storage Temperature Range	- −65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	- 2kV
Recommended Operating Conditions (Note 4)	
Supply Input Voltage, VIN	- 4.3V to 9V

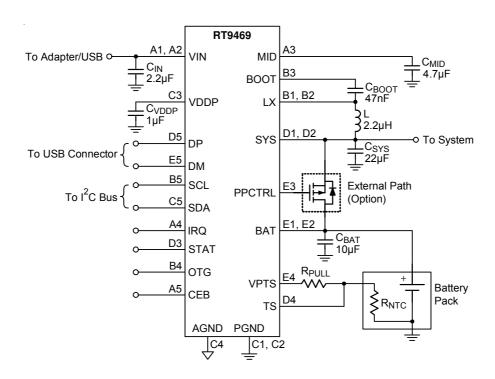
Electrical Characteristics

 $(V_{IN}$ = 5V, V_{BAT} = 4.2V, L = 2.2 μ H, C_{IN} = 2.2 μ F, C_{BATS} = 10 μ F, T_A = 25 $^{\circ}$ C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Protection						
V _{IN} OVP Threshold Voltage			10	11	12	V
V _{IN} OVP Hysteresis				200		mV
Battery OVP			110	117	124	%
Battery OVP Hysteresis				10		%
Over-Temperature Protection	OTP			165		°C
OTP Hysteresis				10		°C
Thermal Regulation Threshold		Charge current begins to reduce		120		°C
System UVP Threshold Voltage	V _{SYS_UVP}			2.4		V
Sleep Mode Comparator						
Sleep Mode Entry Threshold VIN - VBATS	VSLP	2.5V < V _{BATx} < V _{BATREG} , V _{IN} falling	0	0.04	0.1	V
Sleep Mode Exit Hysteresis V _{IN} – V _{BATS}	V _{SLPEXIT}	2.5V < V _{BATx} < V _{BATREG}	40	100	200	mV
Sleep Mode Deglitch Time	tslp	V _{IN} rising above V _{SLP} + V _{SLPEXIT}		128		ms

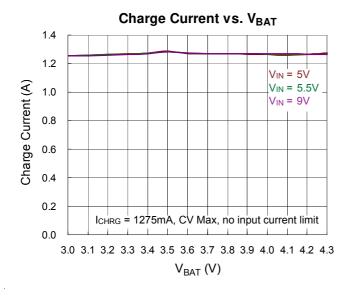
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Under-Voltage Lockout Thres	shold		•			
IC Active Threshold Voltage	V _{UVLO}	V _{IN} rising	3.05	3.3	3.55	V
IC Active Hysteresis	ΔV_{UVLO}	V _{IN} falling from UVLO		150		mV
Input Currents		•	•	•		
		PWM switching, I _{CHG} = I _{BAT} = 0mA		10		mA
VIN Supply Current	IQ	PWM is not switching. ICHG = IBAT = 0mA			5	mA
		High impendence mode			150	μΑ
Leakage Current from Battery	I _{BAT}	V _{IN} = 0V, charger off.			25	μΑ
Input Power Regulation						
Input Voltage Regulation	VMIVR	I ² C Programmable refer to Reg0x21[3:0]	4		8.5	V
VMIVR Accuracy		VMIVR = 4.5V	-5		5	%
		USB charge mode, I _{AICR} = 100mA	80		100	
Average Input Current Regulation Accuracy	I _{AICR}	USB charge mode, I _{AICR} = 500mA	400		500	mA
		USB charge mode, I _{AICR} = 1A	800		1000	
Battery Voltage Regulation						
Battery Voltage Regulation	Voreg	I ² C programmable per 20mV.	3.5		4.62	V
VBATREG Accuracy		0 to 85°C	-1		1	%
Re-Charge Threshold	V _{RECH}	V _{BATx} falling, below V _{BATREG}		125		mV
Re-Charge Deglitch	trech			128		ms
System Minimum Regulation	Voltage					
System Minimum Regulation Voltage	Vsys	I ² C programmable per 0.1V	3.5		3.8	V
Charging Current Regulation	1					
Output Charging Current	I _{CHG}	I ² C programmable per 0.125A	0.4		2.275	Α
ICHG Accuracy		AICR is disabled	-5		5	%
Pre-Charge Threshold	V _{PREC}	I ² C programmable per 0.2V	2		3	V
VPREC Accuracy			-5		5	%
Pre-Charge Current	IPREC	I ² C programmable per 50mA	100		850	mA
IPREC Accuracy			-30		30	%

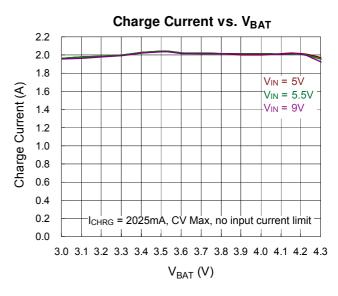
Paramet	er	Symbol	Test Conditions	Min	Тур	Max	Unit
Charge Termination	on Detection	n	,	•			
End of Charge Cur	rent	I _{EOC}	I ² C programmable per 50mA	100		450	mA
Fixed IEOC			As I _{AICR} = 100mA		50		mA
IEOC Accuracy				-100		100	mA
Deglitch Time for E	OC	t _{EOC}	I _{CHG} < I _{EOC} , V _{BAT} > V _{REC}		2		ms
PWM				•			
High-Side On-Resi	stance		From VIN to LX, exclude IAICR = 100mA		90	150	mΩ
Low-Side On-Resis	stance		From LX to PGND		60	100	mΩ
Charging Efficiency	y		V _{BATx} = 4V, and I _{CHG} = 2.025A		85		%
Oscillator Frequence	су	osc	I ² C programmable 0.75/1.5 MHz		1.5		MHz
Frequency Accurac	СУ			-10		10	%
Maximum Duty Cy	cle		At minimum voltage input		95		%
Minimum Duty Cyc	le			0			%
Peak OCP as Char	rger Mode	Існдоср			4.5		Α
Power Path On-Re	sistance		From SYS to VBAT		35	60	mΩ
Boost Mode Oper	ation						
Output Voltage Lev	/el	V_{OTG}	To VIN		5.05		V
Output Voltage Acc	curacy			-3	1	3	%
Efficiency			V_{BATx} = 4V, and I_{IN} = 0.8A,		85		%
Maximum Output (Current		I ² C programmable, 0.5A/1A	1			Α
Peak Over-Current	Protection				4.5		Α
VIN OVP as OTG I	Boost				6		V
VIN OVP Hysteres	is				250		mV
Minimum Battery V Boost	oltage for	VBATMIN	As boost start-up		2.9		V
Minimum Battery Voltage Hysteresis					400		mV
I ² C Characteristic	:s		·	•			
Output Low Voltage	е	V _{OL}	I _{DS} = 10mA			0.4	V
SCL, SDA Input	Logic-High	VIH		1.3			\/
Threshold Voltage	Logic-Low	VIL				0.4	V
SCL Clock						400	kHz

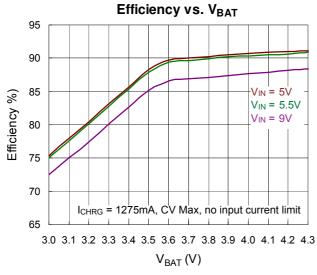


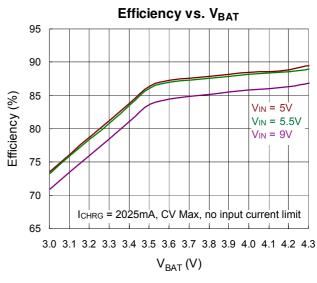
Paramet	er	Symbol	Test Conditions	Min	Тур	Max	Unit
DP DM Detection				•	•		
D+ Voltage Source	!	V _{DP_SCR}		0.5	0.6	0.7	V
D+ Voltage Source Current	Output			200			μА
D- Current Sink		IDM_SINK		50	100	150	μА
Input Capacitance		C.	DM pin, switch open		4.5	5	,,F
прит Сараспапсе		Cı	DP pin, switch open		4.5	5	pF
Innut lookogo		1.	DM pin, switch open	-1		1	
Input leakage		l _l	DP pin, switch open	-1		1	- μΑ
DP Low Comparate Threshold	or	V _{DP_LOW}		0.8			V
DM High Compara Threshold	tor	V _{DM_} HIGH		0.8			V
DM Low Comparat Threshold	or	V _{DM_LOW}				475	mV
NTC Monitor				•	•	•	
HOT Threshold		Vvts_Hot	VTS falling, the ratio of VPTS, VIN > V _{IN(MIN)}	29	30	31	%VPTS
WARM Threshold		Vvts_warm	VTS falling, the ratio of VPTS, VIN > V _{IN(MIN)}	37	38	39	%VPTS
COOL Threshold		Vvts_cool	VTS rising, the ratio of VPTS, VIN > V _{IN(MIN)}	55	56	57	%VPTS
COLD Threshold		VVTS_COLD	VTS rising, the ratio of VPTS, VIN > V _{IN(MIN)}	59	60	61	%VPTS
Low Temperature Hysteresis		ΔV _{VTS}			1		%VPTS
Disable Threshold		V _{VTS_OFF}	TS function disable	2	3	4	%VPTS
Control I/O Pin			•				
Output Low Voltage	e for STAT	VoL	I _{DS} = 10mA			0.4	V
CE Input	Logic-High	ViH		1.3			
Threshold Voltage	Logic-Low	V _{IL}				0.4	\ \

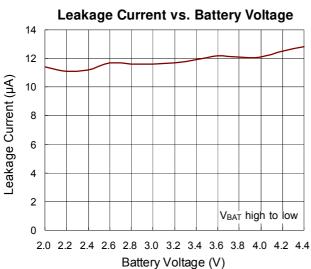
- **Note 1.** Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- **Note 2.** θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}\text{C}$ with the component mounted on a high effective-thermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.

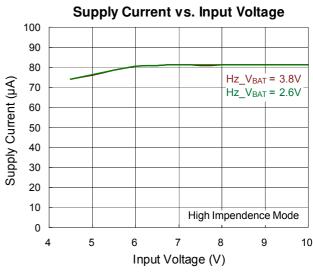


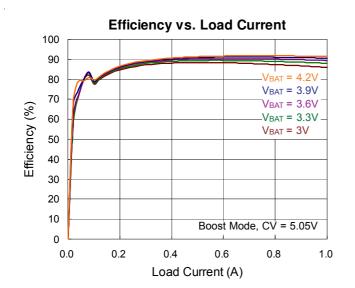

Typical Application Circuit

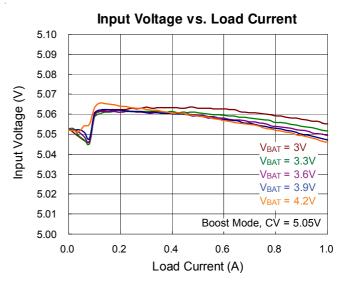





Typical Operating Characteristics







Copyright ©2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Applications Information

The RT9469 switching charger integrates a synchronous PWM controller with power MOSFETs to provide input voltage MIVR (Minimum Input Voltage Regulation), input current AICR (Active Input Current Regulation), high accuracy current and voltage regulation, and charge termination. The charger also features USB OTG (On-The-Go).

The RT9469 has three operation modes: charge mode, boost mode (USB OTG), and high impedance mode. In charge mode, the RT9469 supports a precision charging system for single cell. In boost mode, the RT9469 works as the boost converter and boosts the voltage from battery to VIN pin for sourcing the OTG devices. In high impedance mode, the RT9469 stops charging or boosting and operates in a mode with low current from VIN or battery to reduce the power consumption when the portable device is in standby mode.

Notice that the RT9469 integrate input power source (AC adapter or USB input) detection. Thus, the RT9469 can automatically set the charge current by option. The charge current needs to be set via I²C interface by the host. The RT9469 application mechanism and I²C compatible interface are introduced in later sections.

Charge Mode Operation

Minimum Input Voltage Regulation (MIVR)

The RT9469 features input voltage MIVR function to prevent input voltage drop due to insufficient current provided by the adapter or USB input. If MIVR function is enabled, the input voltage decreases when the over-current of the input power source occurs. VIN is regulated at a predetermined voltage level which can be set as 4V to 8.5V by I²C interface. At this time, the current drawn by the RT9469 equals to the maximum current value that the input power can provide at the predetermined voltage level, instead of the set value.

Charge Profile

The RT9469 provides a precision Li-ion or Li-polymer charging solution for single-cell applications. Input current limit, charge current, termination current, charge voltage

and input voltage MIVR are all programmable via the I²C interface. In charge mode, the RT9469 has five control loops to regulate input current (AICR), charge current, charge voltage, input voltage (MIVR) and device junction temperature. During the charging process, all five loops (if MIVR is enabled) are enabled and the dominant one will take over the control.

For normal charging process, the Li-ion or Li-polymer battery is charged in three charging modes depending on the battery voltage. At the beginning of the charging process, the RT9469 is in pre-charge mode. When the battery voltage rises above pre-charge threshold voltage (V_{PREC}), the RT9469 enters fast-charge mode. Once the battery voltage is close to the regulation voltage (V_{OREG}), the RT9469 enters constant voltage mode.

Pre-Charge Mode

For life-cycle consideration, the battery can not be charged with large current under low battery condition. When the BATS pin voltage is below pre-charge threshold voltage (V_{PREC}), the charger is in pre-charge mode with a weak charge current witch equals to the pre-charge current (I_{PREC}). There are two control loops in Pre-charge mode. One is the ICC and the other is the MIN_SYS. If the battery voltage is lower than the SYS voltage, the MOSFET won't fully turn-on to prevent the battery voltage to influence the SYS voltage. It features that the charger can also provide the current to the load from SYS even the battery voltage is too low. In pre-charge mode, the charger basically works as an LDO. The pre-charge current also acts as the current limit when the BATS pin is shorted. The Pre-Charge current levels are 100mA - 850mA programmed by I²C.

Fast-Charge Mode and Settings

As the BAT pin rises above VPREC, the charger enters fast-charge mode and starts charging. Notice that the MUIC integrates input power source (AC adapter or USB input) detection. Thus, the switching charger can set the charge current by option automatically. Unlike the linear charger (LDO), the switching charger (Buck converter) is a current amplifier. The current drawn by the switching

Copyright@2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

charger is different from the current into the battery.

The user can set the Average Input Current Regulation (AICR) and output charge current (I_{CHRG}) respectively.

Cycle-by-Cycle Current Limit

The charger of the RT9469 has an embedded cycle-bycycle current limit for inductor. Once the inductor current touches the threshold (4.5A typ.), the charger stops charging immediately to prevent over-current from damaging the device. Notice that, the mechanism can not be disabled by any way.

Average Input Current Regulation (AICR)

The AICR setting is controlled by I²C. The AICR100 mode limits the input current to 100mA. The AICR500 mode limits the input current to 500mA. If the application does not need input current limit, it can be disabled also. The AICR levels programmed by I²C and suitable for USB port and several TA types

Charge Current (I_{CHG})

The charge current into the battery is determined by the power path sensing RON and ICC setting by I²C. The voltage between the SYS and BAT pins is regulated to the voltage control by ICC setting. (I_{CC} x R_{ON}, R_{ON}: power path R_{ON})

At the RT9469, the R_{ON} is $35m\Omega$ and the Fast-Charge currents is set by the I²C interface from 0.4A to 2.275A per 125mA.

Constant Voltage Mode and Settings

The RT9469 enters constant voltage mode when the BATS voltage is close to the output-charge voltage (V_{OREG}). In this mode, the charge current begins to decrease. For default settings (charge current termination is disabled), the RT9469 does not turn off and always regulates the battery voltage at VOREG. However, once the charge current termination is enabled, the charger terminates if the charge current is below termination current (I_{EOC}) in constant-voltage mode. The charge current termination function is controlled by the I2C interface.

After termination, a new charge cycle restarts when one of the following conditions is detected:

- The BATS pin voltage falls below the Voreg Vrech threshold.
- VIN Power On Reset (POR).
- CHG_EN bit toggle or RST bit is set (via I²C interface).

Output Charge Voltage (Voreg)

The output-charge voltage is set by the I²C interface from 3.5V to 4.62V per 25mV. The default value is 4V (011001).

Termination Current (IEOC)

If the charger current termination is enabled (TE bit = "1" of REG0x01[3]), the end-of-charge current is determined by both termination current sense voltage (V_{EOC}) and power path sense resistor (R_{ON}). General R_{ON} is $35m\Omega$, IEOC is set by the I²C interface from 100mA to 450mA per 50mA.

Input Voltage Protection in Charge Mode

During charge mode, there are two protection mechanisms against if input power source capability is less than the charging current setting. One is AICR and the other is minimum input voltage regulation. A suitable level of AICR can prevent VBUS drop by the insufficient capability. As the AICR setting is not suitable, MIVR will regulate the VBUS in the setting level and sink the maximum current of power source.

Sleep Mode $(V_{IN} - V_{BATS} < V_{SLP})$

The RT9469 enters sleep mode if the voltage drop between the VIN and BATS pins falls below V_{SLP}. In sleep mode, the reverse blocking switch and PWM are all turned off. This function prevents battery drain during poor or no input power source.

Input Over-Voltage Protection

When VBUS rises above the input over-voltage threshold, the switching charger stops charging and sets the fault status bits. The condition is released when VBUS falls below OVP threshold. The switching charger then resumes charging operation.

Boost Mode Operation (OTG) Trigger and Operation

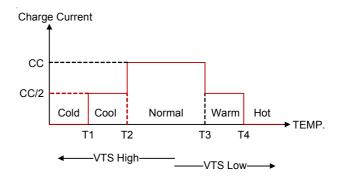
The RT9469 features USB OTG support. When OTG function is enabled, the synchronous boost control loop takes over the power MOSFETs and reverses the power flow from the battery to the VIN pin. In normal boost mode, the VIN pin is regulated to the level controlled by VOREG[5:0] from 4.425V to 5.825 per 25mV. The boost provides up to 1A current to support other OTG devices connected to the USB connector.

Output Over-Voltage Protection

In boost mode, the output over-voltage protection is triggered when the VIN voltage is above the output OVP threshold. When OVP occurs, the boost converter stops switching and turns off immediately.

Output Overload Protection

The RT9469 provides an overload protection to prevent the device and battery from damage when VIN is overload. Once overload condition is detected, the reverse blocking switch operates in linear region to limit the output current while the MID voltage remains in voltage regulation. If the overload condition lasts for more than 32ms, the RT9469 will recognize the overload fault condition and resets registers to the default settings.

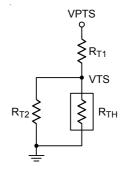

Battery Detection During Normal Charging

The RT9469 provides a battery absent detection scheme to detect insertion or removal of the battery pack. The battery detection scheme is valid only when both TE = 1 and BATD EN = 1.

During normal charging process, once the charge done condition is satisfied ($V_{BATS} > V_{OREG} - V_{RECH}$ and termination current is detected), the RT9469 turns off the PWM converter and initiates a discharge current (detection current) for a detection time period. After that, the RT9469 checks the BATS voltage. If it is still above the recharge threshold, the battery is present and charge done is detected. If the BATS voltage is below the recharge threshold, the battery is absent. Thus, the RT9469 stops charging and the charge parameters are reset to the default values. The charge resumes after a period of tDET (2sec. typ.).

JEITA Protection

To enhance thermal protection of battery, JEITA function is implemented in the RT9469. JEITA guideline was released in 2007. It includes Warm and cool protection (cool section is between T1 and T2; warm section is between T3 and T4, see the figure as below). When battery's temperature is in warm or cool section, the RT9469 will reduce charging current (by a half of CC mode current). RT9469 stop charging if temperature is lower than T1 or is higher than T4.



Thermal of battery can be monitored by TS PIN. There are 4 sections should be implemented in JEITA function. Base on R_{hot} and R_{cold} , RT1 and RT2 can be determined by equation (1) and equation (2).

(R_{hot} mean that system trigger battery OTP, R_{cold} mean that system trigger battery low temperature protection.)

$$R_{T1} = VPTS \times [(1/V_{T1} - 1/V_{T4})/(1/R_{Cold} - 1/R_{Hot})]$$
 (1)

$$R_{T2} = R_{T1} \times [1 / (VPTS / V_{T1} - R_{T1} / R_{Cold} - 1)]$$
 (2)

Copyright ©2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WL-CSP-25B 2.52x2.52 package, the thermal resistance, θ_{JA} , is 32.1°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at T_A = 25°C can be calculated as below :

 $P_{D(MAX)}$ = (125°C - 25°C) / (32.1°C/W) = 3.11W for a WL-CSP-25B 2.52x2.52 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

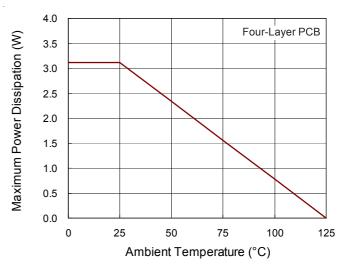


Figure 1. Derating Curve of Maximum Power Dissipation

Layout Considerations

- For AGND noise reduction, PGND and AGND should connect directly at top layer.
- For AGND noise reduction, PGND and AGND should be connected by ground plane at inner layer1. And this ground plane should be connected to system ground plane by via.
- VBUS and VMID (capacitor GND) should be connected to IC PGND directly at top layer.
- The output inductor and bootstrap capacitor should be placed close to the RT9469 and LX pins.

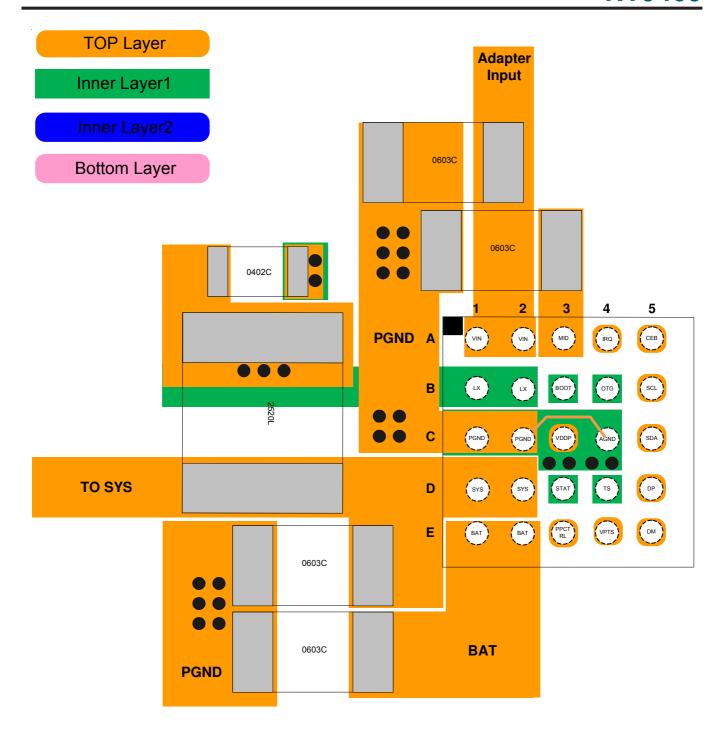


Figure 2. PCB Layout Guide

Control Register (Control)

I²C Slave Address: 0100101

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	Device ID		VENI	DOR_ID			CHII	P_REV	
0x03	Reset Value	0	1	0	0	0	0	0	0
	Read/Write	R	R	R	R	R	R	R	R
	Control1	Sel_ SWFreq	EN_ STAT	STA	AT	BOOST	PWR_ Rdy	OTG_ PinP	MIVR
0x00	Reset Value	0	1	0	0	0	0	0	0
	Read/Write	R/W	R/W	R	R	R	R	R	R
	Control2		IEOC[2:0]		Higher_ OCP	TE	IIN_INT	HZ	OPA_ MODE
0x01	Reset Value	0	1	0	0	0	0	0	0
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Control3			VORE	G[5:0]			OTG_PL	OTG_EN
0x02	Reset Value	0	1	1	0	0	1	1	0
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Control4	RST	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
0x04	Reset Value	0	0	0	0	0	0	0	0
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Control5	SYSUVP_ HW_SEL	OTG_OC	SYS_M	in[1:0]		IPRI	EC[3:0]	
0x05	Reset Value	1	0	0	1	0	0	1	1
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Control6		ICH	RG[3:0]		EN_OSCSS		VPREC[2	:0]
0x06	Reset Value	0	0	0	0	0	0	1	0
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Control7	CC_JEITA	BATD_EN	Chip_EN	CHG_EN	TS_HOT	TS_ WARM	TS_COOL	TS_COLD
0x07	Reset Value	0	0	1	1	0	0	0	0
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Control8	Reserved	Reserved	Reserved	Reserved	Reserved	PI	PSenseNod	e [2:0]
0x1C	Reset Value	1	0	0	1	1	1	0	0
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	IRQ1	TSDI	VINOVPI	WakeUpI	WatchDogl	Reserved	CHTERM_ TMRI	SYSUVP	BATAB
0x08	Reset Value	0	0	0	0	0	0	0	0
	Read/Write	R	R	R	R	R	R	R	R
	IRQ2	CHRVPI	CHBADI	CHBATOVI	CHTERMI	CHRCHGI	CHTMRI	CHTREGI	SYSWAKEUPI
0x09	Reset Value	0	0	0	0	0	0	0	0
	Read/Write	R	R	R	R	R	R	R	R

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	IRQ3	BSTVINOVI	BSTOLI	BSTLOWVI	Reserved	Reserved	Reserved	Reserved	Reserved
0x0A	Reset Value	0	0	0	0	0	0	0	0
	Read/Write	R	R	R	R	R	R	R	R
	Mask 1	TSDIM	VINOVPIM	WakeUpIM	WatchDog IM	Reserved	CHTERM_ TMRIM	SYSUVP IM	BATABM
0x0B	Reset Value	0	0	0	0	0	0	0	0
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Mask 2	CHRVPIM	CHBADIM	CHBATOV IM	CHTERMIM	CHRCHGIM	CHTMRIM	CHTREGI M	SYSWAKE UPIM
0x0C	Reset Value	0	0	0	0	0	0	0	0
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Mask 3	BSTVINOV IM	BSTOLIM	BSTLOW VIM	Reserved	Reserved	Reserved	Reserved	Reserved
0x0D	Reset Value	0	0	0	0	0	0	0	0
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Control-DP DM	(CHG_TYP[2:0)]	IINLMTS	SEL[1:0]	CHG_ 2DET	CHG_ 1DET	CHGRUN
0x0E	Reset Value	0	0	0	1	0	1	1	0
	Read/Write	R	R	R	R/W	R/W	R/W	R/W	R
	Control 9	Reserved	PPC_ CTRL_SEL	EN_ PPCTRL	MIVR_ ENB		MIVR_L		
0x21	Reset Value	0	1	0	0	0	0	0	0
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Control 10	CLR_DP	DP_STAT		WT_FC[2:0]		WT_PR	RC[1:0]	TMR_ Pause
0x22	Reset Value	0	0	0	0	0	0	0	0
	Read/Write	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
	Control 11			AICR[4:0]	<u> </u>			Reserved	
0x23	Reset Value	0	0	1	0	1	1	1	1
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Control 12	EOC_Ti	mer[1:0]	Wa	akeUp_Timer[2:0]	WK_ Timer_EN	IRQ_ Pulse	IRQ_REZ
0x24	Reset Value	0	0	0	0	0	0	0	0
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Control 13	WDT_EN	Reserved	Reserved	TWDTRST	Reserved	Reserved	TWE	OT[1:0]
0x25	Reset Value	0	0	0	1	0	0	1	1
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x26	STAT IRQ	TSHOTI	TSWARMI	TSCOOLI	TSCOLDI	PWR_Rdyl	MIVRI	Reserved	Reserved
	Reset Value	0	0	0	0	0	0	0	0
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	STAT IRQ Mask	TSHOTIM	TSWARMIM	TSCOOLI M	TSCOLDI M	PWR_ RdylM	MIVRIM	Reserved	Reserved
0x27	Reset Value	0	0	0	0	0	0	0	0
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	Control 1	Sel_ SWFreq	EN_ STAT	ST	ΓΑΤ	BOOST	PWR_ Rdy	OTG_ Pinp	MIVR		
0x00	Reset Value	0	1	0	0	0	0	0	0		
	Read/Write	R/W	R/W	R	R	R	R	R	R		
Sel_S	SWFreq	The switching frequency selection bit (Charger/OTG) 0 : The switching frequency is 1.5MHz 1 : The switching frequency is 750kHz									
EN_	_STAT	0 : Disable S 1 : Enable S									
S	TAT	Charger statu 00 : Ready 01 : Charge i 10 : Charge o 11 : Fault	n progress								
ВС	OST	0 : Not in boo 1 : Boost mo									
PWI	R_Rdy	Power status 0 : Input pow 1 : Input pow	er is bad, VII								
ОТО	S_PinP	OTG pin pola 0 : OTG inpu 1 : OTG inpu	t pin is low								
M	IVR	MIVR status 0 : MIVR reg 1 : MIVR reg	ulation is ina								
	Control 2	I	EOC[2:0]		Higher_ OCP	TE	IIN_INT	HZ	OPA_ MODE		
0x01	Reset Value	0	1	0	0	0	0	0	0		
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
EOC current level setting 000: 100mA 001: 150mA 010: 200mA IEOC 011: 250mA 100: 300mA 101: 350mA 111: 450mA											
Highe	er_OCP	Charger/OTC 0 : OCP = 4.5 1 : OCP = 6A	5A	selection							
	ΤE	Charge curre 0 : Disable ch 1 : Enable ch	narge curren	t terminati	on) control					

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
IIN	_INT	IAICR setting bit 0 : Decided by external OTG pin, 500mA current limit when OTG pin is low and 1A current limit when OTG pin is high 1 : Decided by I ² C IAICR[4:0] and DPDM results, refer to REG0x0E									
ŀ	HZ	0 : Not high ii 1 : High impe									
OPA_	_MODE	0 : Charger n 1 : Boost mo									
	Control 3			VOREG	[5:0]			OTG_PL	OTG_EN		
0x02	Reset Value	0	1	1	0	0	1	1	0		
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
VORI	EG[5:0]	Battery regular 00 0000 : 3.5 00 0001 : 3.5 00 0010 : 3.5 01 1000 : 3.9 01 1001 : 4.0 01 1010 : 4.0 10 0111 : 4.2 10 1000 : 4.3 10 1001 : 4.3 10 1110 : 4.4 10 1111 : 4.4 10 1111 : 4.4 10 11 0110 : 4.5 11 0111 : 4.6 11 1000 : 4.6 11 1111 : 4.6 11 1111 : 4.6 11 1111 : 4.6 11	0V / 4.425V 2V / 4.45V 4V / 4.475V 8V / 5.025 V 0V / 5.05V 2 / 5.075V 8V / 5.4V 0V / 5.425V 2V / 5.575V 4V / 5.6V 8V / 5.775V 0V / 5.8V 2V / 5.825V			J					
	G_PL	0 : Active at le 1 : Active at le 0 : Disable O	High level								
ОТО	G_EN	1 : Enable O									

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	Device ID		VEND	OR_ID			CHIP	_REV				
0x03	Reset Value	0	1	0	0	0	0	0	0			
	Read/Write	R	R	R	R	R	R	R	R			
VENI	OOR_ID	Vendor Ide	ntification :	Richtek: 0	100b							
CHII	P_REV	Chip Revision										
	Control 4	RST	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved			
0x04	Reset Value	0	0	0	0	0	0	0	0			
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
F	RST	Write : 1-Cl	narger in re	set mode, ()-No effect,	Read : alwa	ays get "0"					
	Control 5	SYSUVP_ HW_SEL	OTG_OC	SYS_M	/lin[1:0]		IPRE	C[3:0]				
0x05	Reset Value	1	0	0	1	0	0	1	1			
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
SYSUVF	P_HW_SEL	0 : Switchir 1 : Switchir	System UV protection selection bit 0 : Switching is not turned off when System UVP 1 : Switching is turned off when System UVP Over-current protection threshold									
OT:	G_OC	0 : 0.5A 1 : 1A										
SYS_	Min[1:0]	System mir 00 : 3.5V 01 : 3.6V 10 : 3.7V 11 : 3.8V	nimum regu	lation volta	ge							
IPRI	EC[3:0]	0000 : 100r 0001 : 150r 0010 : 200r 0011 : 250r 0100 : 300r 0110 : 400r 0111 : 450r 1000 : 500r 1001 : 550r 1010 : 600r 1011 : 650r 1100 : 700r 1101 : 750r 1110 : 800r 1111 : 850r	mA mA mA mA mA mA mA mA mA mA									

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	Control 6	ICHRG[3:0] EN_OSC SS VPREC[2:0]										
0x06	Reset Value	0	0	0	0	0	0	1	0			
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
	'		Charging current setting (Recommed to set REG0x1C [2:0] = 111) 0000 : 0.4A 0001 : 0.525A 0010 : 0.65A									
ICHF	RG[3:0]	0110 : 1.15A 										
		1010 : 1.65A										
		1110 : 2.15A 1111 : 2.275A										
EN_0	oscss	Enable signal of oscillator spread spectrum 0 : Disable spread spectrum 1 : Enable spread spectrum										
VPR	VPREC[2:0]		Pre-Charge voltage threshold 000 : 2V 001 : 2.2V 010 : 2.4V 011 : 2.6V 100 : 2.8V 101 : 3.0V									
	Control 7	CC_ JEITA	BATD_ EN	CHIP_EN	CHG_ EN	TS_HOT	TS_WARM	TS_ COOL	TS_COLD			
0x07	Reset Value	0	0	1	1	0	0	0	0			
	Read/Write	R/W	R/W	R/W	R/W	R	R	R	R			
CC_	JEITA	Charging current setting bit 0 : ICHRG 1 : ICHRG/2										
BATD_EN		Battery detection when charge done 0 : Disable battery detection 1 : Enable battery detection										
CHIP_EN		Chip enable bit 0 : Chip is disabled 1 : Chip is enabled										
CHG_EN		Charger enable bit : 0 : Charger is disabled 1 : Charger is enabled										
TS_HOIT		Temperature status read bit 0 : Normal temperature 1 : Temperature is hot										

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
TS_WARM		Temperature status read bit 0 : Normal temperature 1 : Temperature is warm										
TS_COOL		Temperature status read bit 0 : Normal temperature 1 : Temperature is cool										
TS_COLD		Temperature status read bit 0 : Normal temperature 1 : Temperature is cold										
	Control 8	Reserved	ed Reserved Reserved Reserved PPSenseNode [2:0									
0x1C	Reset Value	1	0	0	1	1	1	0	0			
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
PPSenseNode [2:0]		Power path current sensing adjustment 100 : default setting 111 : recommended setting										
	IRQ 1	TSDI	VINOVPI	WakeUpI	WatchDogI	Reserved	CHTERM_ TMRI	SYSU VPI	BATABI			
0x08	Reset Value	0	0	0	0	0	0	0	0			
	Read/Write	R	R	R	R	R	R	R	R			
Т	SDI	Thermal shutdown fault. Set if the die temperature exceeds the thermal shutdown threshold										
VINOVPI		VIN over-voltage protection 0 : Normal 1 : VINOVP is detected										
Wa	WakeUpl		WakeUp timer fault 0 : Normal 1 : WakeUp timer is expired									
WatchDogI		WatchDog timer fault 0 : Normal 1 : WatchDog timer is expired										
CHTERM_TMRI		EOC timer fault 0 : Normal 1 : EOC timer is expired										
SYSUVPI		System UVP fault 0 : Normal 1 : SYSUVP is triggered										
BATABI		Battery absence fault bit 0 : Normal 1 : Battery absence										

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	IRQ 2	CHRVPI	CHBADI	CHBATO VI	CHTERM I	CHRCH GI	CHTMRI	CHTREGI	SYSWAK EUPI			
0x09	Reset Value	0	0	0	0	0	0	0	0			
	Read/Write	R	R	R	R	R	R	R	R			
CH	IRVPI	Charger fa	ult. Reverse	e protection	(VIN < BAT	S + VSLP)						
CHBADI		Charger fault. Bad adapter (Poor Input source or VIN < VUVLO)										
CHE	SATOVI	Charger fault. Battery OVP										
CH	CHTERMI		Charge terminated									
CHF	RCHGI	Recharge r	equest (VE	BATS < VOF	REG – VREG	CH)						
СН	TMRI	Charger fa	ult. Timer ti	me-out								
CH	ΓREGI	Charger warning. Thermal regulation loop active										
SYSW	/AKEUPI	Battery vol	tage is high	enough to	wakeup sys	tem						
	IRQ 3	BSTVINO VI	BSTOLI	BSTLOW VI	Reserved	Reserved	Reserved	Reserved	Reserved			
0x0A	Reset Value	0	0	0	0	0	0	0	0			
	Read/Write	R	R	R	R	R	R	R	R			
BST	VINOVI	Boost fault. VIN OVP (VIN > VIN_BOVP)										
BS	BSTOLI		Boost fault. Over load									
BSTLOWVI		Boost fault. Battery voltage is too low										
	Mask 1	TSDIM	VINOVP IM	WakeUpI M	WatchDo glM	Reserved	CHTERM _TMRIM	SYSUVP IM	BATABIM			
0x0B	Reset Value	0	0	0	0	0	0	0	0			
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
TS	SDIM	TSDI fault interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked										
VIN	VINOVPIM		VIN OVP fault interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked									
WakeUpIM		WakeUp timer interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked										
WatchDogIM		WatchDog timer interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked										
CHTERM_TMRIM		EOC timer interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked										

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYSUVPIM		System UVP fault interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked									
BATABIM		Battery absence fault interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked									
	Mask 2	CHRVP IM	CHBAD IM	CHBATO VIM	CHTERM IM	CHRCH GIM	CHTMRI M	CHTREG IM	SYSWAK EUPIM		
0x0C	Reset Value	0	0	0	0	0	0	0	0		
	Read/Write	R	R	R	R	R	R	R	R		
СНЕ	RVPIM	Charger reverse protection interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked									
CHE	BADIM	Charger Bad adapter interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked									
CHBATOVIM		Charger battery over-voltage interrupt mask 0 : Interrupt is not masked, 1 : Interrupt is masked									
CHTERMIM		Charge terminated interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked									
CHRCHGIM		Charger recharge request interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked									
CHTMRIM		Charger timer timeout interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked									
CHTREGIM		Charger thermal regulation loop active interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked									
SYSWA	AKEUPIM	System wakeup interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked									