

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

RTAN Series

Stackpole Electronics, Inc.

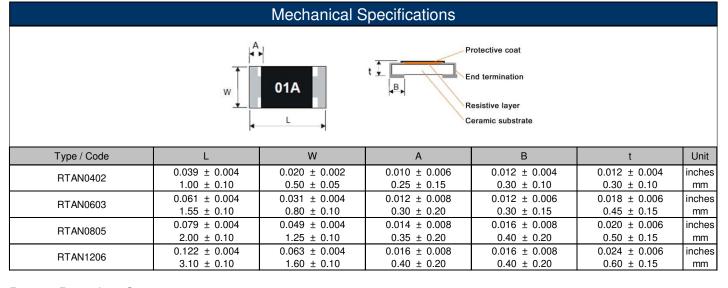
Resistive Product Solutions

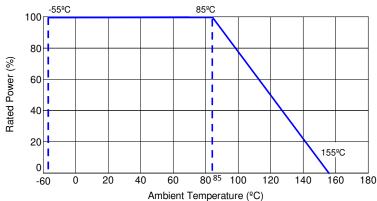
Tantalum Nitride Thin Film Chip Resistor

Features:

- TaN thin film resistor
- Self-passivating technology is impervious to moisture
- Sulfur resistant (per ASTM B809-95 humid vapor test)
- Meets or exceeds 85°C/85% R.H. at 10% rated power humidity test
- AEC-Q200 qualified
- RoHS compliant

Applications:


- Automotive electronics
 - Medical equipment
- Measuring instrumentation
- Communication devices


Electrical Specifications							
Type / Code	Power Rating (Watts) @	Working Overload Te		Resistance Temperature	Ohmic Range (Ω) and Tolerance		
	85ºC			Coefficient	0.05%, 0.1%, 0.25%, 0.5%, 1%		
RTAN0402	0.063W	50V	100V		40 - 35K		
RTAN0603	0.15W	75V	150V	±25ppm/ºC	40 - 130K		
RTAN0805	0.2W	100V	200V	±50ppm/ºC	10 - 350K		
RTAN1206	0.4W	200V	400V		10 - 1M		

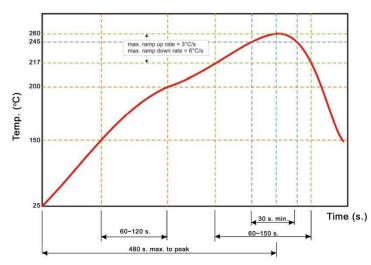
Operating Temperature: -55 ~ +155°C

⁽¹⁾ Lesser of √P*R or maximum working voltage.

Power Derating Curve:

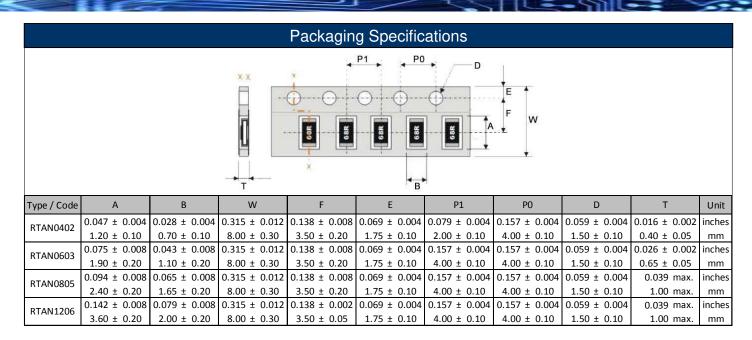
Stackpole Electronics, Inc.

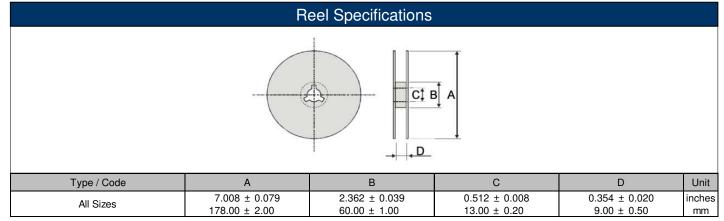
Resistive Product Solutions


Performance Characteristics							
Test	Test Method	Test Specification	Test Condition				
Electrical			DC resistance values measurement Temperature Coefficient of Resistance (TCR) Natural resistance change per change in degree centigrade				
Characteristics	IEC-60115-1 4.8	Within the specified tolerance	$\frac{R_2 - R_1}{R_1 (t_2 - t_1)} \times 10^6 (\text{ppm/}^{\circ}\text{C}) t_1: 20^{\circ}\text{C} + 5^{\circ}\text{C}/-1^{\circ}\text{C}$ R1: Resistance at reference temperature (20^{\circ} + 5^{\circ}\)C/-1^{\circ}				
Short Time Overload	IEC-60115-1 4.13	ΔR/R max. ± (0.1%+0.02Ω)	R2: Resistance at test temperature (-55°C or +125°C) Permanent resistance change after a 5 second application of a voltage 2.5 times RCWV or the maximum overload voltage specified in the above list, whichever is less.				
Resistance to Soldering Heat	AEC-Q200-15	No visible damage Δ R/R max. ± (0.1%+0.02Ω)	Un-mounted chips completely immersed for 10±1 second in a SAC solder bath at 260±5°C				
Solderability	IEC-60068-2-58	Good tinning (>95% covered) No visible damage	Un-mounted chips completely immersed for 2±0.5 seconds in a SAC solder bat at 235±5°C				
Thermal Shock	MIL-STD-202 Method 107	No visible damage Δ R/R max. ± (0.1%+0.02Ω)	Test -55 to 125°C /dwell time 15 minutes/max. transfer time 20 seconds 1000 cycles				
Load Life and Moisture	AEC-Q200-7	ΔR/R max. ± (0.1%+0.02Ω)	1000 +48/-0 hours, loaded with 10% rated power in humidity chamber controller at +85°C /85% R.H.				
Load Life	IEC-60115-1 4.25	ΔR/R max. ± (0.1%+0.02Ω)	1000 +48/-0 hours, loaded with RCWV or Vmax in chamber controller 85±2°C, 1.5 hours ON and 0.5 hours OFF				
High Temperature Load Life	AEC-Q200-8 MIL-STD-202-108	ΔR/R max. ± (0.1%+0.02Ω)	1000 hours at 125±2°C, loaded with rated power continuously				
High Temperature Exposure	AEC-Q200-3	ΔR/R max. ± (0.1%+0.02Ω)	1000 hours at 125°C, unpowered				
Biased Humidity	AEC-Q200-6 MIL-STD-202 Method 106	ΔR/R max. ± (0.1%+0.02Ω)	65±2°C, 80~100% R.H., 10 cycles, 24 hours/cycle				
Mechanical Shock	MIL-STD-202 Method 213	ΔR/R max. ± (0.1%+0.02Ω)	1/2 Sine Pulse / 150g Peak / Velocity 15.4 foot/second				
Vibration	Vibration MIL-STD-202 ΔR/R max		5 g's for 20 minutes, 12 cycles each of 3 orientations				
Terminal Strength	Terminal Strength AEC-Q200-6		1 Kg. for 60 seconds				
Bending Strength AEC-Q200-2		ΔR/R max. ± (0.1%+0.02Ω)	Bending 2mm for 60 seconds				

Storage conditions: Temperature 5 to 40°C. Humidity: 20 to 70% R.H.

Soldering Condition:


The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount surface mount resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).


Surface mount resistors are tested for solderability at 235°C during 2 seconds within lead-free solder bath. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering profile and condition that provide reliable joints without any damage are given on the picture on the right.

Stackpole Electronics, Inc.

Resistive Product Solutions

Part Marking Specifications

1% Marking
The nominal resistance is marked on
the surface of the overcoating with the
use of 4 digit markings.
0402 are not marked

5% Marking
The nominal resistance is marked on the surface of the oercoating with the use of 3 digit markings.

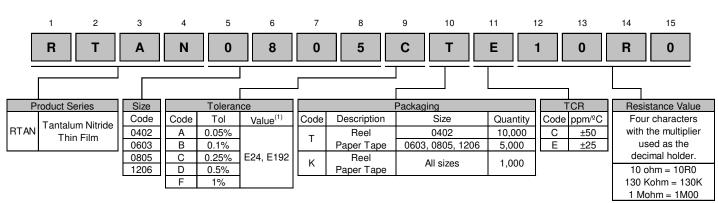
0402 are not marked

For shared E24/E96 values, 1% tolerance product may be marked with three digit marking instead of the standard four digit marking for all other E96 values. All E24 values available in 1% tolerance are also marked with three digit marking.

Resistive Product Solutions

Mark Instructions for 0603 1% Chip Resistors (per EIA-J)

A two-digit number is assigned to each standard R-Value (E96) as shown in the chart below. This is followed by one alpha character which is used as a multiplier. Each letter from "Y" to "F" represents a specific multiplier as follows:


Y = 0.1	B = 100	E = 100,000
X = 1	C = 1,000	F = 1,000,000
A = 10	D = 10,000	

EXAMPLE:

Chip Marking	Explanation	Value		
01B	01 means 10.0 and B = 100	10.0 x 100 = 1 K ohm		
25C	25 means 17.8 and C = 1,000	17.8 x 1,000 = 17.8 K ohm		
93D	93 means 90.9 and D = 10,000	90.9 x 10,000 = 909 K ohm		

E96											
1%	#	1%	#	1%	#	1%	#	1%	#	1%	#
10.0	01	14.7	17	21.5	33	31.6	49	46.4	65	68.1	81
10.2	02	15.0	18	22.1	34	32.4	50	47.5	66	69.8	82
10.5	03	15.4	19	22.6	35	33.2	51	48.7	67	71.5	83
10.7	04	15.8	20	23.2	36	34.0	52	49.9	68	73.2	84
11.0	05	16.2	21	23.7	37	34.8	53	51.1	69	75.0	85
11.3	06	16.5	22	24.3	38	35.7	54	52.3	70	76.8	86
11.5	07	16.9	23	24.9	39	36.5	55	53.6	71	78.7	87
11.8	08	17.4	24	25.5	40	37.4	56	54.9	72	80.6	88
12.1	09	17.8	25	26.1	41	38.3	57	56.2	73	82.5	89
12.4	10	18.2	26	26.7	42	39.2	58	57.6	74	84.5	90
12.7	11	18.7	27	27.4	43	40.2	59	59.0	75	86.6	91
13.0	12	19.1	28	28.0	44	41.2	60	60.4	76	88.7	92
13.3	13	19.6	29	28.7	45	42.2	61	61.9	77	90.9	93
13.7	14	20.0	30	29.4	46	43.2	62	63.4	78	93.1	94
14.0	15	20.5	31	30.1	47	44.2	63	64.9	79	95.3	95
14.3	16	21.0	32	30.9	48	45.3	64	66.5	80	97.6	96

How to Order

(1) E192 values are not marked and may be subject to 20Kpc MOQ