imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SII Semiconductor Corporation

S-1011 Series

HIGH-WITHSTAND VOLTAGE BUILT-IN DELAY CIRCUIT (EXTERNAL DELAY TIME SETTING) VOLTAGE DETECTOR

www.sii-ic.com

© SII Semiconductor Corporation, 2014-2015

The S-1011 Series is a high-accuracy voltage detector developed using CMOS technology. The detection voltage is fixed internally, and the accuracy of the S-1011 Series A / C / E / G type is \pm 1.5%. It operates with current consumption of 600 nA typ.

Apart from the power supply pin, the detection voltage input pin (SENSE pin) is also prepared in the SENSE detection product, so the output is stable even if the SENSE pin falls to 0 V.

The detection signal and release signal can be delayed by setting a capacitor externally, and the detection delay time accuracy is $\pm 20\%$ (C_P = 3.3 nF, Ta = $\pm 25^{\circ}$ C), the release delay time accuracy is $\pm 20\%$ (C_P = 3.3 nF, Ta = $\pm 25^{\circ}$ C). Output form is Nch open-drain output.

Features

- Detection voltage:
- Detection voltage accuracy:
- Detection delay time accuracy:
- Release delay time accuracy:
- Current consumption:
- Operation voltage range:
- Hysteresis width:
- Output form:
- Operation temperature range:
- Lead-free (Sn 100%), halogen-free

Applications

- Power supply monitor for microcomputer and reset for CPU
- Constant voltage power supply monitor for TV and home appliance etc.
- Power supply monitor for Blu-ray recorder, notebook PC and digital still camera
- Industrial equipment, housing equipment

Package

• SOT-23-6

3.0 V to 10.0 V (0.05 V step) (SENSE detection product) 3.6 V to 10.0 V (0.05 V step) (VDD detection product) \pm 1.5% (A / C / E / G type) \pm 20% (C_N = 3.3 nF) \pm 20% (C_P = 3.3 nF) 600 nA typ. 1.8 V to 36.0 V "Available" (5.0% typ.) / "unavailable" is selectable.

"Available" (5.0% typ.) / "unavailab Nch open-drain output

Ta = -40° C to $+85^{\circ}$ C

Rev.1.2_01

1

Block Diagrams

1. S-1011 Series A / J type (VDD detection product)

***1.** Parasitic diode

Figure 1

2. S-1011 Series C / L type (VDD detection product)

FunctionStatusVoltage detectionVDD detectionHysteresis widthUnavailable

Function

Voltage detection

Hysteresis width

Status

VDD detection Available

(5.0% typ.)

*1. Parasitic diode

Figure 2

3. S-1011 Series E / N type (SENSE detection product)

Function	Status
Voltage detection	SENSE detection
Hysteresis width	Available
	(5.0% typ.)

*1. Parasitic diode

Figure 3

4. S-1011 Series G / Q type (SENSE detection product)

Status
SENSE detection
Unavailable

*1. Parasitic diode

Figure 4

Product Name Structure

Users can select the product type and detection voltage value for the S-1011 Series. Refer to "1. Product name" regarding the contents of product name, "2. Function list of product types" regarding the product types, "3. Package" regarding the package drawings and "4. Product name lists" regarding details of the product name.

1. Product name

- ***1.** Refer to the tape drawing.
- *2. Refer to "2. Function list of product types".

Remark Although the detection voltage in the S-1011 Series is 10.0 V max., the detection voltage exceeding 10.0 V with an external resistor can be set. Refer to "2. SENSE pin" in "■ Operation" for details.

2. Function list of product types

Table 1

Product Type	Voltage Detection	Output Logic	Hysteresis Width	Detection Voltage
А	VDD detection	Active "L"	Available (5.0% typ.)	5.0 V to 10.0 V
С	VDD detection	Active "L"	Unavailable	5.0 V to 10.0 V
E	SENSE detection	Active "L"	Available (5.0% typ.)	5.0 V to 10.0 V
G	SENSE detection	Active "L"	Unavailable	5.0 V to 10.0 V
J	VDD detection	Active "L"	Available (5.0% typ.)	3.6 V to 4.95 V
L	VDD detection	Active "L"	Unavailable	3.6 V to 4.95 V
Ν	SENSE detection	Active "L"	Available (5.0% typ.)	3.0 V to 4.95 V
Q	SENSE detection	Active "L"	Unavailable	3.0 V to 4.95 V

3. Package

Table 2	Package	Drawing	Codes
---------	---------	---------	-------

Package Name	Dimension	Таре	Reel
SOT-23-6	MP006-A-P-SD	MP006-A-C-SD	MP006-A-R-SD

4. Product name lists

4.1 S-1011 Series A type

Voltage detection: VDD detection Hysteresis width: Available (5.0% typ.) Output logic: Active "L" Detection voltage: 5.0 V to 10.0 V

Table 3		
Detection Voltage	SOT-23-6	
$5.0 \text{ V} \pm 1.5\%$	S-1011A50-M6T1U4	
6.0 V ± 1.5%	S-1011A60-M6T1U4	
$7.0 \text{ V} \pm 1.5\%$	S-1011A70-M6T1U4	
8.0 V ± 1.5%	S-1011A80-M6T1U4	
$9.0 \ V \pm 1.5\%$	S-1011A90-M6T1U4	
10.0 V ± 1.5%	S-1011AA0-M6T1U4	

Remark Please contact our sales office for products with specifications other than the above.

4. 2 S-1011 Series C type

Voltage detection: VDD detection Hysteresis width: Unavailable Output logic: Active "L" Detection voltage: 5.0 V to 10.0 V

Table 4

Detection Voltage	SOT-23-6
5.0 V ± 1.5%	S-1011C50-M6T1U4
$6.0 \text{ V} \pm 1.5\%$	S-1011C60-M6T1U4
7.0 V ± 1.5%	S-1011C70-M6T1U4
$8.0 \text{ V} \pm 1.5\%$	S-1011C80-M6T1U4
9.0 V ± 1.5%	S-1011C90-M6T1U4
10.0 V ± 1.5%	S-1011CA0-M6T1U4

Remark Please contact our sales office for products with specifications other than the above.

4.3 S-1011 Series E type

Voltage detection: SENSE detection Hysteresis width: Available (5.0% typ.) Output logic: Active "L" Detection voltage: 5.0 V to 10.0 V

Table 5

Detection Voltage	SOT-23-6
$5.0 \text{ V} \pm 1.5\%$	S-1011E50-M6T1U4
$6.0 \text{ V} \pm 1.5\%$	S-1011E60-M6T1U4
$7.0 \text{ V} \pm 1.5\%$	S-1011E70-M6T1U4
$8.0 \text{ V} \pm 1.5\%$	S-1011E80-M6T1U4
$9.0 \ V \pm 1.5\%$	S-1011E90-M6T1U4
10.0 V ± 1.5%	S-1011EA0-M6T1U4

Remark Please contact our sales office for products with specifications other than the above.

4.4 S-1011 Series G type

Voltage detection: SENSE detection Hysteresis width: Unavailable Output logic: Active "L" Detection voltage: 5.0 V to 10.0 V

	Table 6
Detection Voltage	SOT-23-6
$5.0~V\pm1.5\%$	S-1011G50-M6T1U4
$6.0~V\pm1.5\%$	S-1011G60-M6T1U4
$7.0~V\pm1.5\%$	S-1011G70-M6T1U4
$8.0~V\pm1.5\%$	S-1011G80-M6T1U4
$9.0~V\pm1.5\%$	S-1011G90-M6T1U4
$10.0 \text{ V} \pm 1.5\%$	S-1011GA0-M6T1U4

Remark Please contact our sales office for products with specifications other than the above.

4.5 S-1011 Series J type

Voltage detection: VDD detection Hysteresis width: Available (5.0% typ.) Output logic: Active "L" Detection voltage: 3.6 V to 4.95 V

Table 7

Detection Voltage	SOT-23-6
$3.6 \text{ V} \pm 3.0\%$	S-1011J36-M6T1U4
$4.2~V\pm2.5\%$	S-1011J42-M6T1U4

Remark Please contact our sales office for products with specifications other than the above.

4.6 S-1011 Series L type

Voltage detection: VDD detection Hysteresis width: Unavailable Output logic: Active "L" Detection voltage: 3.6 V to 4.95 V

Table 8

Detection Voltage	SOT-23-6
$3.6~V\pm3.0\%$	S-1011L36-M6T1U4
$4.2~\textrm{V}\pm2.5\%$	S-1011L42-M6T1U4

Remark Please contact our sales office for products with specifications other than the above.

4.7 S-1011 Series N type

Voltage detection: SENSE detection Hysteresis width: Available (5.0% typ.) Output logic: Active "L" Detection voltage: 3.0 V to 4.95 V

Table 9		
Detection Voltage	SOT-23-6	
$3.0~\text{V}\pm3.0\%$	S-1011N30-M6T1U4	
$3.3 \text{ V} \pm 3.0\%$	S-1011N33-M6T1U4	
$3.6 \text{ V} \pm 3.0\%$	S-1011N36-M6T1U4	
4.2 V ± 2.5%	S-1011N42-M6T1U4	

. . .

Remark Please contact our sales office for products with specifications other than the above.

4.8 S-1011 Series Q type

Voltage detection: SENSE detection Hysteresis width: Unavailable Output logic: Active "L" Detection voltage: 3.0 V to 4.95 V

Table 10

Detection Voltage	SOT-23-6
$3.0 \text{ V} \pm 3.0\%$	S-1011Q30-M6T1U4
$3.3 \text{ V} \pm 3.0\%$	S-1011Q33-M6T1U4
$3.6 V \pm 3.0\%$	S-1011Q36-M6T1U4
$4.2 V \pm 2.5\%$	S-1011Q42-M6T1U4

Remark Please contact our sales office for products with specifications other than the above.

Pin Configurations

1. S-1011 Series A / C / J / L type (VDD detection product)

1.1 SOT-23-6

10	I op view						
6 H	5 日	4 日					
		╧┙					

Figure 5

Table 11

Pin No.	Symbol	Description
1	VDD	Voltage input pin
2	NC ^{*1}	No connection
3	OUT	Voltage detection output pin
4	CP*2	Connection pin for release delay capacitor
5	VSS	GND pin
6	CN*3	Connection pin for detection delay capacitor

*1. The NC pin is electrically open.

The NC pin can be connected to the VDD pin or the VSS pin. *2. Connect a capacitor between the CP pin and the VSS pin.

- The release delay time can be adjusted according to the capacitance. Moreover, the CP pin is available even when it is open.
- *3. Connect a capacitor between the CN pin and the VSS pin. The detection delay time can be adjusted according to the capacitance. Moreover, the CN pin is available even when it is open.

Table 12

2. S-1011 Series E / G / N / Q type (SENSE detection product)

2.1 SOT-23-6

10	10p view						
6	5	4					
日	日	日					
Н	H	Н					
1	2	З					

Top view

Figure 6

Pin No.	Symbol	Description
1	VDD	Voltage input pin
2	SENSE	Detection voltage input pin
3	OUT	Voltage detection output pin
4	CP*1	Connection pin for release delay capacitor
5	VSS	GND pin
6	CN*2	Connection pin for detection delay capacitor

 *1. Connect a capacitor between the CP pin and the VSS pin. The release delay time can be adjusted according to the capacitance. Moreover, the CP pin is available even when it is open.

*2. Connect a capacitor between the CN pin and the VSS pin. The detection delay time can be adjusted according to the capacitance. Moreover, the CN pin is available even when it is open.

Absolute Maximum Ratings

Table 13

		(Ta = +25°C unless otherv	vise specified)
Item	Symbol	Absolute Maximum Rating	Unit
Power supply voltage	$V_{\text{DD}} - V_{\text{SS}}$	$V_{SS} - 0.3$ to $V_{SS} + 45$	V
SENSE pin input voltage	VSENSE	$V_{\rm SS}-0.3$ to $V_{\rm SS}+45$	V
CP pin input voltage	VCP	$V_{\text{SS}} - 0.3$ to $V_{\text{DD}} + 0.3 \leq V_{\text{SS}} + 7.0$	V
CN pin input voltage	V _{CN}	$V_{\text{SS}} - 0.3$ to $V_{\text{DD}} + 0.3 \leq V_{\text{SS}} + 7.0$	V
Output voltage	Vout	$V_{\rm SS}-0.3$ to $V_{\rm SS}+45$	V
Output current	Іоит	25	mA
Operation ambient temperature	Topr	-40 to +85	°C
Storage temperature	T _{stg}	-40 to +125	°

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

■ Thermal Resistance Value

Table 14

Item	Symbol	Con	dition	Min.	Тур.	Max.	Unit
	0		Board 1	-	159	_	°C/W
Junction-to-ambient thermal resistance	U ja	501-23-0	Board 2	-	124	-	°C/W

*1. Test environment: compliance with JEDEC STANDARD JESD51-2A

Remark Refer to "**Thermal Characteristics**" for details of power dissipation and test board.

Electrical Characteristics

1. VDD detection product

1.1 S-1011 Series J / L type

Table 15

				(Ia = ·	+25°C un	less other	wise sp	pecified)
Item	Symbol		Condition	Min.	Тур.	Max.	Unit	Test Circuit
Detection voltage*1	V	$3.6~V \leq -V_{DET(S)} \leq$	4.15 V	$-V_{DET(S)} \times 0.970$	-Vdet(s)	$\begin{array}{c} -V_{\text{DET(S)}} \\ \times \ 1.030 \end{array}$	V	1
Detection voltage '	-VDET	$4.2~V \leq -V_{\text{DET}(S)} \leq$	4.95 V	$-V_{DET(S)} \times 0.975$	-VDET(S)	$-V_{DET(S)} \times 1.025$	V	1
		1. true	$3.6~V \leq -V_{\text{DET}(S)} \leq 4.15~V$	-V _{DET} × 0.010	$-V_{DET} \times 0.050$	-V _{DET} × 0.100	V	1
Hysteresis width V _{HYS}	V _{HYS}	ј туре	$4.2~V \leq -V_{\text{DET}(S)} \leq 4.95~V$	$-V_{DET} \times 0.020$	$-V_{DET} \times 0.050$	$-V_{DET} \times 0.090$	V	1
		L type*2	$3.6 \text{ V} \le -V_{\text{DET}(S)} \le 4.95 \text{ V}$	-	0	-	V	1
Current consumption	lss	V_{DD} = $-V_{DET}$ - 0.1	-	0.60	1.60	μA	2	
Operation voltage	Vdd		_	1.8	-	36.0	V	1
Output current	Іоит	Output transistor Nch $V_{DD} = 2.9 V$ $V_{DS}^{*3} = 0.05 V$		0.33	_	_	mA	3
Leakage current	ILEAK	Output transistor Nch	V _{DD} = 30.0 V, V _{OUT} = 30.0 V	_	_	2.0	μA	3
Detection delay time*4	t RESET	C _N = 3.3 nF		8.0	10.0	12.0	ms	4
Release delay time*5	t DELAY	C _P = 3.3 nF		8.0	10.0	12.0	ms	4
CP pin discharge ON resistance	Rcp	V _{DD} = 6.9 V, V _{CP} = 0.5 V		0.52	_	2.2	kΩ	_
CN pin discharge ON resistance	RCN	V _{DD} = 2.9 V, V _{CN} =	= 0.5 V	1.0	_	5.0	kΩ	_

*1. $-V_{DET}$: Actual detection voltage value, $-V_{DET(S)}$: Set detection voltage value

***2.** Hysteresis width is "unavailable", so release voltage = detection voltage.

*3. V_{DS} : Drain-to-source voltage of the output transistor

*4. The time period from when the pulse voltage of $-V_{DET(S)} + 0.5 V \rightarrow -V_{DET(S)} - 0.5 V$ is applied to the VDD pin to when V_{OUT} reaches V_{DD} / 2, after the power supply voltage (V_{DD}) reaches the release voltage once.

*5. The time period from when the pulse voltage of $-V_{DET(S)} - 0.5 \text{ V} \rightarrow -V_{DET(S)} + 0.5 \text{ V}$ is applied to the VDD pin to when V_{OUT} reaches V_{DD} / 2.

HIGH-WITHSTAND VOLTAGE BUILT-IN DELAY CIRCUIT (EXTERNAL DELAY TIME SETTING) VOLTAGE DETECTOR S-1011 Series Rev.1.2_01

1. 2 S-1011 Series A / C type

Table 16

				(1a = -	+25°C un	less other	wise sp	pecified)
Item	Symbol		Condition	Min.	Тур.	Max.	Unit	Test Circuit
Detection voltage*1	-V _{DET}	$5.0~V \leq -V_{DET(S)} \leq$	10.0 V	$\begin{array}{c} -V_{\text{DET(S)}} \\ \times 0.985 \end{array}$	-V _{DET(S)}	$\begin{array}{l} -V_{\text{DET(S)}} \\ \times \ 1.015 \end{array}$	V	1
Hysteresis width	V _{HYS}	A type		$-V_{DET} \times 0.030$	$\begin{array}{c} -V_{\text{DET}} \\ \times \ 0.050 \end{array}$	$-V_{DET} \times 0.080$	V	1
		C type*2		-	0	_	V	1
Current consumption	Iss	V_{DD} = $-V_{DET} - 0.1$	V_{DD} = $-V_{DET} - 0.1 \text{ V}, 5.0 \text{ V} \le -V_{DET} \le 10.0 \text{ V}$		0.60	1.60	μA	2
Operation voltage	VDD		_	1.8	I	36.0	V	1
Output current	Іоит	Output transistor Nch $V_{DS}^{*3} = 0.05 V$	V _{DD} = 4.5 V	0.5	_	_	mA	3
Leakage current	ILEAK	Output transistor Nch	V _{DD} = 30.0 V, V _{OUT} = 30.0 V	_	-	2.0	μA	3
Detection delay time*4	t RESET	C _N = 3.3 nF		8.0	10.0	12.0	ms	4
Release delay time*5	t DELAY	C _P = 3.3 nF	C _P = 3.3 nF		10.0	12.0	ms	4
CP pin discharge ON resistance	Rcp	V _{DD} = 14.0 V, V _{CP} = 0.5 V		0.30	_	2.60	kΩ	-
CN pin discharge ON resistance	Rcn	V _{DD} = 4.5 V, V _{CN} =	= 0.5 V	0.63	_	2.60	kΩ	_

*1. –V_DET: Actual detection voltage value, –V_DET(S): Set detection voltage value

*2. Hysteresis width is "unavailable", so release voltage = detection voltage.

*3. V_{DS} : Drain-to-source voltage of the output transistor

*4. The time period from when the pulse voltage of $-V_{DET(S)} + 1.0 \text{ V} \rightarrow -V_{DET(S)} - 1.0 \text{ V}$ is applied to the VDD pin to when V_{OUT} reaches V_{DD} / 2, after the power supply voltage (V_{DD}) reaches the release voltage once.

*5. The time period from when the pulse voltage of $-V_{DET(S)} - 1.0 \text{ V} \rightarrow -V_{DET(S)} + 1.0 \text{ V}$ is applied to the VDD pin to when V_{OUT} reaches V_{DD} / 2.

2. SENSE detection product

2.1 S-1011 Series N / Q type

Table 17

					(Ia = +)	25°C unle	ess otherw	lse s	pecified)
Item	Symbol		Co	ndition	Min.	Тур.	Max.	Unit	Test Circuit
Detection voltage*1	N/	V 16 0 V	3.0 V ≤ -	$-V_{DET(S)} \le 4.15 V$	$\begin{array}{c} -V_{\text{DET(S)}} \\ \times \ 0.970 \end{array}$	-Vdet(s)	$\begin{array}{c} -V_{\text{DET(S)}} \\ \times \ 1.030 \end{array}$	V	1
Detection voltage	-V DET	VDD - 10.0 V	4.2 V ≤ -	$-V_{DET(S)} \le 4.95 V$	$\begin{array}{c} -V_{\text{DET(S)}} \\ \times \ 0.975 \end{array}$	-Vdet(s)	$\begin{array}{c} -V_{\text{DET(S)}} \\ \times \ 1.025 \end{array}$	V	1
			Ntuno	$3.0~V \leq -V_{\text{DET}(S)} \leq 4.15~V$	$-V_{DET} \times 0.010$	$-V_{DET} \times 0.050$	$-V_{DET} \times 0.100$	V	1
Hysteresis width	V _{HYS}	V _{DD} = 16.0 V	м туре	$4.2~V \leq -V_{\text{DET}(S)} \leq 4.95~V$	-V _{DET} × 0.020	$-V_{DET} \times 0.050$	-V _{DET} × 0.090	V	1
			Q type*2	$3.0~V \leq -V_{\text{DET}(S)} \leq 4.95~V$	-	0	-	V	1
Current consumption* ³	lss	V_{DD} = 16.0 V, V_{SENSE} = $-V_{DET} - 0.1$ V, 3.0 V $\leq -V_{DET} \leq 4.95$ V			_	0.55	1.55	μA	2
Operation voltage	V _{DD}			-	3.0	-	36.0	V	1
Output current	I _{OUT}	Output transis Nch V _{DS} *4 = 0.05 \	nsistor V _{DD} = 5.0 V, V _{SENSE} = 2.9 V		0.5	_	_	mA	3
Leakage current	I _{LEAK}	Output transis	stor V _{DD} V _{SEI}	= 30.0 V, V _{OUT} = 30.0 V, _{NSE} = 30.0 V	_	_	2.0	μA	3
Detection delay time*5	t _{RESET}	C _N = 3.3 nF			8.0	10.0	12.0	ms	4
Release delay time*6	tDELAY	C _P = 3.3 nF	C _P = 3.3 nF			10.0	12.0	ms	4
SENSE pin resistance	RSENSE				6.8	-	275	MΩ	2
CP pin discharge ON resistance	R _{CP}	V_{DD} = 3.0 V, V_{SENSE} = 6.9 V, V_{CP} = 0.5 V			0.72	-	4.29	kΩ	-
CN pin discharge ON resistance	R _{CN}	V _{DD} = 3.0 V, V	/ _{SENSE} = 2	2.9 V, $V_{CN} = 0.5 V$	0.72	_	4.29	kΩ	_

*1. -V_{DET}: Actual detection voltage value, -V_{DET(S)}: Set detection voltage value

*2. Hysteresis width is "unavailable", so release voltage = detection voltage.

***3.** The current flowing through the SENSE pin resistance is not included.

*4. V_{DS}: Drain-to-source voltage of the output transistor

*5. The time period from when the pulse voltage of $-V_{DET(S)} + 0.5 \text{ V} \rightarrow -V_{DET(S)} - 0.5 \text{ V}$ is applied to the SENSE pin to when V_{OUT} reaches V_{DD} / 2, after voltage of 16.0 V is applied to the VDD pin and the SENSE pin input voltage (V_{SENSE}) reaches the release voltage once.

*6. The time period from when voltage of 16.0 V is applied to the VDD pin and the pulse voltage of $-V_{DET(S)} - 0.5 V \rightarrow -V_{DET(S)} + 0.5 V$ is applied to the SENSE pin to when V_{OUT} reaches V_{DD} / 2.

HIGH-WITHSTAND VOLTAGE BUILT-IN DELAY CIRCUIT (EXTERNAL DELAY TIME SETTING) VOLTAGE DETECTOR S-1011 Series Rev.1.2_01

2. 2 S-1011 Series E / G type

				(Ta =	+25°C un	less othe	wise s	pecified)
Item	Symbol		Condition	Min.	Тур.	Max.	Unit	Test Circuit
Detection voltage*1	-V _{DET}	V _{DD} = 16.0 V, 5.0	$V \leq -V_{\text{DET}(S)} \leq 10.0 \text{ V}$	$\begin{array}{c} -V_{\text{DET(S)}} \\ \times 0.985 \end{array}$	-V _{DET(S)}	$\begin{array}{l} -V_{\text{DET(S)}} \\ \times \ 1.015 \end{array}$	V	1
Hysteresis width	VHVS	Vpp = 16.0 V	E type	$-V_{DET} \times 0.030$	$-V_{DET} \times 0.050$	$-V_{DET} \times 0.080$	V	1
	•mo		G type*2	-	0	-	V	1
Current consumption* ³	lss	V_{DD} = 16.0 V, V_{SE} 5.0 V $\leq -V_{DET} \leq 10$	V_{DD} = 16.0 V, V_{SENSE} = $-V_{DET} - 0.1$ V, 5.0 V $\leq -V_{DET} \leq 10.0$ V		0.55	1.55	μA	2
Operation voltage	Vdd		_	3.0	-	36.0	V	1
Output current	Іоит	Output transistor Nch $V_{DS}^{*4} = 0.05 V$	V_{DD} = 5.0 V, V_{SENSE} = 4.5 V	0.5	-	_	mA	3
Leakage current	ILEAK	Output transistor Nch	V _{DD} = 30.0 V, V _{OUT} = 30.0 V, V _{SENSE} = 30.0 V	_	_	2.0	μA	3
Detection delay time*5	t RESET	C _N = 3.3 nF		8.0	10.0	12.0	ms	4
Release delay time*6	t DELAY	C _P = 3.3 nF		8.0	10.0	12.0	ms	4
SENSE pin resistance	RSENSE		_	26.0	-	400	MΩ	2
CP pin discharge ON resistance	Rcp	V _{DD} = 4.5 V, V _{SEN}	V _{DD} = 4.5 V, V _{SENSE} = 14.0 V, V _{CP} = 0.5 V		-	2.60	kΩ	_
CN pin discharge ON resistance	Rcn	V _{DD} = 4.5 V, V _{SEN}	_{SE} = 4.5 V, V _{CN} = 0.5 V	0.63	_	2.60	kΩ	_

Table 18

*1. $-V_{DET}$: Actual detection voltage value, $-V_{DET(S)}$: Set detection voltage value

*2. Hysteresis width is "unavailable", so release voltage = detection voltage.

***3.** The current flowing through the SENSE pin resistance is not included.

*4. V_{DS}: Drain-to-source voltage of the output transistor

*5. The time period from when the pulse voltage of $-V_{DET(S)} + 1.0 \text{ V} \rightarrow -V_{DET(S)} - 1.0 \text{ V}$ is applied to the SENSE pin to when V_{OUT} reaches V_{DD} / 2, after voltage of 16.0 V is applied to the VDD pin and the SENSE pin input voltage (V_{SENSE}) reaches the release voltage once.

*6. The time period from when voltage of 16.0 V is applied to the VDD pin and the pulse voltage of $-V_{DET(S)} - 1.0 \text{ V} \rightarrow -V_{DET(S)} + 1.0 \text{ V}$ is applied to the SENSE pin to when V_{OUT} reaches V_{DD} / 2.

Test Circuits

Standard Circuits

1. VDD detection product

- *1. The delay capacitor (C_P) should be connected directly to the CP pin and the VSS pin.
- *2. The delay capacitor (C_N) should be connected directly to the CN pin and the VSS pin.

Figure 15

2. SENSE detection product

- *1. The delay capacitor (C_P) should be connected directly to the CP pin and the VSS pin.
- *2. The delay capacitor (C_N) should be connected directly to the CN pin and the VSS pin.

Figure 16

Caution The above connection diagram and constant will not guarantee successful operation. Perform thorough evaluation using the actual application to set the constant.

Explanation of Terms

1. Detection voltage (–VDET)

The detection voltage is a voltage at which the output in **Figure 21** or **Figure 22** turns to "L" (VDD detection product: V_{DD} , SENSE detection product: V_{SENSE}). The detection voltage varies slightly among products of the same specification. The variation of detection voltage between the specified minimum ($-V_{DET}$ min.) and the maximum ($-V_{DET}$ max.) is called the detection voltage range (Refer to **Figure 17**, **Figure 19**).

Example: In $-V_{DET}$ = 5.0 V product, the detection voltage is either one in the range of 4.925 V $\leq -V_{DET} \leq$ 5.075 V. This means that some $-V_{DET}$ = 5.0 V product have $-V_{DET}$ = 4.925 V and some have $-V_{DET}$ = 5.075 V.

2. Release voltage (+VDET)

The release voltage is a voltage at which the output in Figure 21 or Figure 22 turns to "H" (VDD detection product: V_{DD} , SENSE detection product: V_{SENSE}).

The difference of detection voltage and release voltage is 5.0% typ.

The release voltage varies slightly among products of the same specification. The variation of release voltage between the specified minimum ($+V_{DET}$ min.) and the maximum ($+V_{DET}$ max.) is called the release voltage range (Refer to **Figure 18**, **Figure 20**). The range is calculated from the actual detection voltage ($-V_{DET}$) of a product. In the S-1011 Series C / G / L / Q type, the release voltage ($+V_{DET}$) is the same value as the actual detection voltage ($-V_{DET}$) of a product.

Example: In $-V_{DET}$ = 6.0 V product, the release voltage is either one in the range of 6.0873 V \leq +V_{DET} \leq 6.5772 V. This means that some $-V_{DET}$ = 6.0 V product have +V_{DET} = 6.0873 V and some have +V_{DET} = 6.5772 V.

HIGH-WITHSTAND VOLTAGE BUILT-IN DELAY CIRCUIT (EXTERNAL DELAY TIME SETTING) VOLTAGE DETECTOR S-1011 Series Rev.1.2_01

3. Hysteresis width (V_{HYS})

The hysteresis width is the voltage difference between the detection voltage and the release voltage (the voltage at point B – the voltage at point A = V_{HYS} in **Figure 24** and **Figure 28**). Setting the hysteresis width between the detection voltage and the release voltage, prevents malfunction caused by noise on the input voltage.

4. Feed-through current

The feed-through current is a current that flows instantaneously to the VDD pin at the time of detection and release of a voltage detector.

Operation

1. Basic operation

1.1 S-1011 Series A / J type

(1) When the power supply voltage (V_{DD}) is the release voltage (+V_{DET}) or higher, the Nch transistor is turned off to output V_{DD} ("H") when the output is pulled up.

Since the Nch transistor (N1) is turned off, the input voltage to the comparator is $\frac{(R_B + R_C) \bullet V_{DD}}{R_A + R_B + R_C}$

(2) Even if V_{DD} decreases to +V_{DET} or lower, V_{DD} is output when V_{DD} is higher than the detection voltage (-V_{DET}). When V_{DD} decreases to -V_{DET} or lower (point A in Figure 24), the Nch transistor is turned on. And then V_{SS} ("L") is output from the OUT pin after the elapse of the detection delay time (t_{RESET}).

At this time, N1 is turned on, and the input voltage to the comparator is $\frac{R_B \bullet V_{DD}}{R_A + R_D}$

- (3) The output is unstable when V_{DD} decreases to the IC's minimum operation voltage or lower. V_{DD} is output when the output is pulled up.
- (4) V_{SS} is output by increasing V_{DD} to the minimum operation voltage or higher. Even if V_{DD} exceeds –V_{DET}, V_{SS} is output when V_{DD} is lower than +V_{DET}.
- (5) When V_{DD} increases to +V_{DET} or higher (point B in **Figure 24**), the Nch transistor is turned off. And then V_{DD} is output from the OUT pin after the elapse of the release delay time (t_{DELAY}) when the output is pulled up.

*1. Parasitic diode

Remark When V_{DD} is the minimum operation voltage or lower, the output voltage from the OUT pin is unstable in the shaded area.

Figure 24 Timing Chart of S-1011 Series A / J Type

1. 2 S-1011 Series C / L type

(1) When the power supply voltage (V_{DD}) is the release voltage (+V_{DET}) or higher, the Nch transistor is turned off to output V_{DD} ("H") when the output is pulled up.

At this time, the input voltage to the comparator is $\frac{(R_B + R_C) \bullet V_{DD}}{R_A + R_B + R_C}$

- (2) When V_{DD} decreases to the detection voltage (-V_{DET}) or lower (point A in **Figure 26**), the Nch transistor is turned on. And then V_{SS} ("L") is output from the OUT pin after the elapse of the detection delay time (t_{RESET}).
- (3) The output is unstable when V_{DD} decreases to the IC's minimum operation voltage or lower. V_{DD} is output when the output is pulled up.
- (4) V_{SS} is output by increasing V_{DD} to the minimum operation voltage or higher.
- (5) When V_{DD} increases to +V_{DET} or higher (point B in **Figure 26**), the Nch transistor is turned off. And then V_{DD} is output from the OUT pin after the elapse of the release delay time (t_{DELAY}) when the output is pulled up.

*1. Parasitic diode

Figure 25 Operation of S-1011 Series C / L Type

- **Remark 1.** When V_{DD} is the minimum operation voltage or lower, the output voltage from the OUT pin is unstable in the shaded area.
 - 2. The release voltage is set to the same value as the detection voltage, since there is no hysteresis width.

Figure 26 Timing Chart of S-1011 Series C / L Type

1.3 S-1011 Series E / N type

(1) When the power supply voltage (V_{DD}) is the minimum operation voltage or higher, and the SENSE pin voltage (V_{SENSE}) is the release voltage (+V_{DET}) or higher, the Nch transistor is turned off to output V_{DD} ("H") when the output is pulled up.

Since the Nch transistor (N1) is turned off, the input voltage to the comparator is $\frac{(R_B + R_C) \bullet V_{SENSE}}{R_A + R_B + R_C}$.

(2) Even if V_{SENSE} decreases to $+V_{\text{DET}}$ or lower, V_{DD} is output when V_{SENSE} is higher than the detection voltage $(-V_{\text{DET}})$.

When V_{SENSE} decreases to $-V_{\text{DET}}$ or lower (point A in **Figure 28**), the Nch transistor is turned on. And then V_{SS} ("L") is output from the OUT pin after the elapse of the detection delay time (t_{RESET}).

At this time, N1 is turned on, and the input voltage to the comparator is $\frac{R_B \bullet V_{SENSE}}{R_A + R_B}$

- (3) Even if V_{SENSE} further decreases to the IC's minimum operation voltage or lower, the output from the OUT pin is stable when V_{DD} is minimum operation voltage or higher.
- (4) Even if V_{SENSE} exceeds $-V_{DET}$, V_{SS} is output when V_{SENSE} is lower than $+V_{DET}$.
- (5) When V_{SENSE} increases to +V_{DET} or higher (point B in **Figure 28**), the Nch transistor is turned off. And then V_{DD} is output from the OUT pin after the elapse of the release delay time (t_{DELAY}) when the output is pulled up.

1.4 S-1011 Series G / Q type

(1) When the power supply voltage (V_{DD}) is the minimum operation voltage or higher, and the SENSE pin voltage (V_{SENSE}) is the release voltage (+V_{DET}) or higher, the Nch transistor is turned off to output V_{DD} ("H") when the output is pulled up.

At this time, the input voltage to the comparator is $\frac{(R_B + R_C) \bullet V_{SENSE}}{R_A + R_B + R_C}$

- (2) When V_{SENSE} decreases to the detection voltage (-V_{DET}) or lower (point A in **Figure 30**), the Nch transistor is turned on. And then V_{SS} ("L") is output from the OUT pin after the elapse of the detection delay time (t_{RESET}).
- (3) Even if V_{SENSE} further decreases to the IC's minimum operation voltage or lower, the output from the OUT pin is stable when V_{DD} is minimum operation voltage or higher.
- (4) Even if V_{SENSE} increases, V_{SS} is output when V_{SENSE} is lower than $+V_{DET}$.
- (5) When V_{SENSE} increases to +V_{DET} or higher (point B in **Figure 30**), the Nch transistor is turned off. And then V_{DD} is output from the OUT pin after the elapse of the release delay time (t_{DELAY}) when the output is pulled up.

Figure 30 Timing Chart of S-1011 Series G / Q Type

2. SENSE pin

2.1 Error when detection voltage is set externally

The detection voltage for the S-1011 Series is 10.0 V max., however, in the SENSE detection product with $-V_{DET} = 10.0$ V, the detection voltage can be set externally by connecting a node that was resistance-divided by the resistor (R_A) and the resistor (R_B) to the SENSE pin as shown in **Figure 31**.

For conventional products without the SENSE pin, external resistor cannot be too large since the resistance-divided node must be connected to the VDD pin. This is because a feed-through current will flow through the VDD pin when it goes from detection to release, and if external resistor is large, problems such as oscillation or larger error in the hysteresis width may occur.

In the S-1011 Series, R_A and R_B in **Figure 31** are easily made larger since the resistance-divided node can be connected to the SENSE pin through which no feed-through current flows. However, be careful of error in the current flowing through the internal resistance (R_{SENSE}) that will occur.

Although R_{SENSE} in the S-1011 Series is large (the S-1011 Series E / G type: 26 M Ω min., the S-1011 Series N / Q type: 6.8 M Ω min.) to make the error small, R_A and R_B should be selected such that the error is within the allowable limits.

2.2 Selection of R_A and R_B

In **Figure 31**, the relation between the external setting detection voltage (V_{DX}) and the actual detection voltage ($-V_{DET}$) is ideally calculated by the equation below.

$$V_{DX} = -V_{DET} \times \left(1 + \frac{R_A}{R_B}\right)$$
 ... (1)

However, in reality there is an error in the current flowing through R_{SENSE} . When considering this error, the relation between V_{DX} and $-V_{DET}$ is calculated as follows.

$$V_{DX} = -V_{DET} \times \left(1 + \frac{R_{A}}{R_{B} || R_{SENSE}}\right)$$
$$= -V_{DET} \times \left(1 + \frac{R_{A}}{\frac{R_{B} \times R_{SENSE}}{R_{B} + R_{SENSE}}}\right)$$
$$= -V_{DET} \times \left(1 + \frac{R_{A}}{R_{B}}\right) + \frac{R_{A}}{R_{SENSE}} \times -V_{DET} \qquad \cdots (2)$$

By using equations (1) and (2), the error is calculated as $-V_{\text{DET}} \times \frac{R_{\text{A}}}{R_{\text{SENSE}}}.$

The error rate is calculated as follows by dividing the error by the right-hand side of equation (1).

$$\frac{R_A \times R_B}{R_{SENSE} \times (R_A + R_B)} \times 100 \, [\%] = \frac{R_A \parallel R_B}{R_{SENSE}} \times 100 \, [\%] \qquad \cdots (3)$$

As seen in equation (3), the smaller the resistance values of R_A and R_B compared to R_{SENSE} , the smaller the error rate becomes.

Also, the relation between the external setting hysteresis width (V_{HX}) and the hysteresis width (V_{HYS}) is calculated by equation below. Error due to R_{SENSE} also occurs to the relation in a similar way to the detection voltage.

$$V_{HX} = V_{HYS} \times \left(1 + \frac{R_A}{R_B}\right) \qquad \cdots (4)$$

Figure 31 Detection Voltage External Setting Circuit

- Caution 1. When externally setting the detection voltage, perform the operation with –V_{DET} = 10.0 V product. Contact our sales office for details.
 - 2. If the current flowing through R_B is set to 1 μA or less, the error may become larger.
 - 3. If the parasitic resistance and parasitic inductance between V_{DX} point A and point A VDD pin are larger, oscillation may occur. Perform thorough evaluation using the actual application.
 - 4. If R_A and R_B are large, the SENSE pin input impedance becomes higher and may cause a malfunction due to noise. In this case, connect a capacitor between the SENSE pin and the VSS pin.

3. Delay circuit

The delay circuit has a function that adjusts the detection delay time (t_{RESET}) from when the power supply voltage (V_{DD}) or SENSE pin voltage (V_{SENSE}) reaches the detection voltage ($-V_{DET}$) or lower to when the output from OUT pin inverts.

It also has a function that adjusts the release delay time (t_{DELAY}) from when the power supply voltage (V_{DD}) or SENSE pin voltage (V_{SENSE}) reaches the release voltage (+ V_{DET}) to when the output from OUT pin inverts.

 t_{RESET} is determined by the delay coefficient, the delay capacitor (C_N) and the detection delay time when the CN pin is open (t_{RESET0}), and the t_{DELAY} is determined by the delay coefficient, the delay capacitor (C_P) and the release delay time when the CP pin is open (t_{DELAY0}). They are calculated by the equation below.

 $\begin{array}{l} t_{\text{RESET}} \text{ [ms] = Delay coefficient} \times C_{\text{N}} \text{ [nF] } + \text{ } t_{\text{RESET0}} \text{ [ms]} \\ t_{\text{DELAY}} \text{ [ms] = Delay coefficient} \times C_{\text{P}} \text{ [nF] } + \text{ } t_{\text{DELAY0}} \text{ [ms]} \end{array}$

Operation	Delay Coefficient				
Temperature	Min.	Тур.	Max.		
Ta = +85°C	2.41	2.85	3.32		
Ta = +25°C	2.41	2.86	3.30		
Ta = -40°C	2.40	2.83	3.25		

Table 19

Table 20

Operation Temperature	Detection Delay Time	Release Delay Time
	when CN Pin is Open (treseto)	when CP Pin is Open (t _{DELAY0})
	Тур.	Тур.
Ta = -40°C to +85°C	0.35 ms	0.35 ms

- Caution 1. Mounted board layout should be made in such a way that no current flows into or flows from the CN pin or CP pin since the impedance of the CN pin and CP pin are high, otherwise correct delay time cannot be provided.
 - There is no limit for the capacitance of C_N and C_P as long as the leakage current of the capacitor can be ignored against the built-in constant current value (approximately 300 nA). The leakage current may cause error in delay time. When the leakage current is larger than the built-in constant current, no detect or release takes place.
 - 3. The above equation will not guarantee successful operation. Determine the capacitance of C_N and C_P through thorough evaluation including temperature characteristics in the actual usage conditions.

When using an X8R equivalent capacitor, refer to the "2. Detection delay time (t_{RESET}) vs. Temperature (Ta)", "3. Detection delay time (t_{RESET}) vs. Power supply voltage (V_{DD})", "5. Release delay time (t_{DELAY}) vs. Temperature (Ta)" and "6. Release delay time (t_{DELAY}) vs. Power supply voltage (V_{DD})" in " \blacksquare Reference Data" for details.

Usage Precautions

1. Feed-through current during detection and release

In the S-1011 Series, the feed-through current flows at the time of detection and release. For this reason, if the input impedance is high, oscillation may occur due to voltage drop caused by the feed-through current. When using the S-1011 Series in configurations like those shown in **Figure 32** and **Figure 33**, it is recommended that input impedance be set to 1 k Ω or less.

Determine the impedance through thorough evaluation including temperature characteristics.

Figure 32 VDD Detection Product

Figure 33 SENSE Detection Product

2. Power on and shut down sequence

SENSE detection products monitor SENSE pin voltage (V_{SENSE}) while power is being supplied to the VDD pin. Apply power in the order, the VDD pin then the SENSE pin.

In addition, when shutting down VDD pin, shut down the SENSE pin first, and shut down the VDD pin after the detection delay time (t_{RESET}) has elapsed.

3. Falling power (reference)

Figure 35 shows the relation between V_{DD} amplitude (V_{P-P}) and input voltage falling time (t_F) where the release status can be maintained when the VDD pin (VDD detection product) sharply drops to a voltage equal to or higher than the detection voltage ($-V_{DET}$) during release status.

Figure 36 VDD Pin Input Voltage Waveform

Caution Figure 35 shows the input voltage conditions which can maintain the release status. If the voltage whose V_{P-P} and t_F are larger than these conditions is input to the VDD pin (VDD detection product), the OUT pin may change to a detection status.