

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

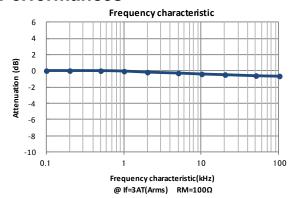
---:f:--+:---

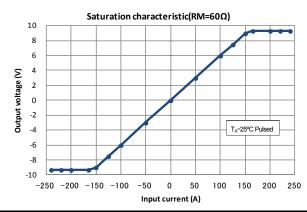
CAME TO LAND TO SERVICE AND THE PARTY OF THE

Hall Effect Current Sensor S25P100D15X

Features:

- · Closed Loop type
- Current or voltage output
- Conversion ratio K_N = 1:1000
- · Printed circuit board mounting
- Aperture
- Insulated plastic case according to UL94V0
- UL Recognition

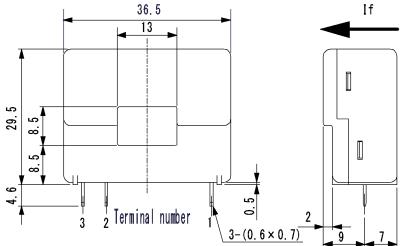

Advantages:


- Excellent accuracy and linearity
- Low temperature drift
- · Wide frequency bandwidth
- No insertion loss
- High Immunity to external interferences
- Optimised response time
- Current overload capability

<u>Specifications</u> Parameters	Symbol	T _A =25°C, V _{CC} =± S25P100D15X	
Primary nominal current	I _f	100A	
·	If		
Maximum current ¹ (at 85°C)	I _{fmax}	$\pm 160A \text{ (at } 40\Omega \le R_M \le 50\Omega)$	
Measuring resistance (If = $\pm A_{DC}$ at 85°C)	R _M	$10\Omega \sim 65\Omega$ (at V _{CC} = ±12V) / $40\Omega \sim 95\Omega$ (at V _{CC} = ±15V)	
Conversion Ratio	K _N	1 : 1000	
Rated output current	Io	100mA	
Output current accuracy²(at I _f)	х	I _O ± 0.5%	
Offset current ³ (at If=0A)	l _{Of}	≤ ± 0.2mA	
Output linearity²(0A∼If)	ε.	≤ ± 0.15% (at I _f)	
Power supply voltage ¹	V _{cc}	± 12V± 15V ± 5%	
Consumption current	Icc	≤ ± 16mA (Output current is not included)	
Response rime ⁴	t _r	\leq 1.0µs (at di/dt = 100A / µs)	
Thermal drift of gain ⁵	Tclo	≤ ± 0.01% / °C	
Thermal drift of offset current	Tclof	\leq ± 0.5mA (at T _A = -40° C \Leftrightarrow +85°C)	
Hysteresis error	I _{OH}	\leq 0.3mA (at I _f =0A \rightarrow I _f \rightarrow 0A)	
Insulation voltage	V _d	AC 3000V, for 1minute (sensing current 0.5mA), inside of through hole ⇔ terminal	
Insulation resistance	R _{IS}	≥ 500M Ω (at DC 500V) , inside of through hole \Leftrightarrow terminal	
Secondary coil resistance	Rs	25Ω (at $T_A = 70$ °C) / 28Ω (at $T_A = 85$ °C)	
Ambient operation temperature	T _A	− 40°C ~ +85°C	
Ambient storage temperature	Ts	−40°C ~ +90°C	

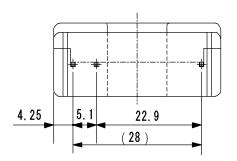
^{&#}x27;Maximum current is restricted by V_{CC} — 'Without offset current—'After removal of core hysteresis—'Time between 90% input current full scale and 90% of sensor output full scale — Without Thermal drift of offset current

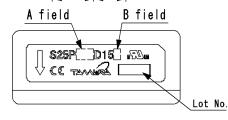
Electrical Performances



Hall Effect Current Sensor S25P100D15X

Mechanical dimensions

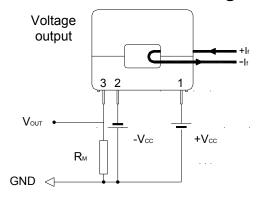


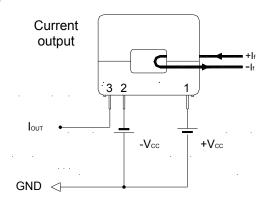

NOTES

- 1. Unit is mm
- 2. Tolerance is 0.5mm

Terminal number:

- 1. +Vcc(+15V)
- 2. -Vcc(-15V)
- 3. I_{OUT}




A field	display			
Current	A field			
50A	050			
100A	100			
150A	150			

B field display			
Coil turn	B field		
1000T	Х		
2000T	Y		

50A is 1000T only 150A is 2000T only

Electrical connection diagram

S25P100D15X At I_f = 100A & V_{CC} = ±15 V_{DC} 40 Ω ≤ R_M ≤ 95 Ω

UL Standard

UL 508, CSA C22.2 No.14 (UL FILE No.E243511)

- For use in Pollution Degree 2 Environment.
- Maximum Surrounding air temperature rating, 85°C.

CAUTION

Do not wrap the primary conductor around the core part of the product to increase measured current.

Package & Weight Information

Weight	Pcs/box	Pcs/carton	Pcs/pallet
20g	100	300	7200

