## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China 3 V, Flash with Enhanced VersatileIO ${ }^{\text {TM }}$

## Distinctive Characteristics

## Architectural Advantages

■ 128-/128-/64-/32-Mbit Page Mode devices

- Page size of 8 words: Fast page read access from random locations within the page
- Single power supply operation
- Full Voltage range: 2.7 to 3.6 V read, erase, and program operations for battery-powered applications
■ Dual Chip Enable inputs (only in PL129J)
- Two CE\# inputs control selection of each half of the memory space
- Simultaneous Read/Write Operation
- Data can be continuously read from one bank while executing erase/program functions in another bank
- Zero latency switching from write to read operations

■ FlexBank Architecture (PL127J/PL064J/PL032J)

- 4 separate banks, with up to two simultaneous operations per device
- Bank A:

PL127J -16 Mbit ( $4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 31$ )
PL064J - 8 Mbit ( $4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 15$ )
PL032J - 4 Mbit ( $4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 7$ )

- Bank B:

PL127J - 48 Mbit (32 Kw $\times$ 96)
PL064J - 24 Mbit ( $32 \mathrm{Kw} \times 48$ )
PL032J - 12 Mbit (32 Kw $\times 24$ )

- Bank C:

PL127J - 48 Mbit (32 Kw $\times$ 96)
PL064J - 24 Mbit ( $32 \mathrm{Kw} \times 48$ )
PL032J - 12 Mbit ( $32 \mathrm{Kw} \times 24$ )

- Bank D:

PL127J -16 Mbit ( $4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 31$ )
PL064J - 8 Mbit ( $4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 15$ )
PL032J - 4 Mbit ( $4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 7$ )
■ FlexBank Architecture (PL129J)

- 4 separate banks, with up to two simultaneous operations per device
- CE\#1 controlled banks:

Bank 1A: PL129J - 16-Mbit ( $4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 31$ )
Bank 1B: PL129J - 48-Mbit (32Kw $\times 96$ )

- CE\#2 controlled banks:

Bank 2A: PL129J - 48-Mbit (32 Kw $\times 96$ )
Bank 2B: PL129J - 16-Mbit ( $4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 31$ )

- Enhanced Versatilel/O ( $\mathrm{V}_{\mathrm{IO}}$ ) Control
- Output voltage generated and input voltages tolerated on all control inputs and I/Os is determined by the voltage on the $\mathrm{V}_{10}$ pin
$-\mathrm{V}_{10}$ options at 1.8 V and $3 \mathrm{VI} / \mathrm{O}$ for PL127J and PL129J devices
- 3V V ${ }_{10}$ for PL064J and PL032J devices
- Secured Silicon Sector region
- Up to 128 words accessible through a command sequence
- Up to 64 factory-locked words
- Up to 64 customer-lockable words

■ Both top and bottom boot blocks in one device

- Manufactured on 110-nm process technology
- Data Retention: 20 years typical
- Cycling Endurance: 1 million cycles per sector typical


## Performance Characteristics

- High Performance
- Page access times as fast as 20 ns
- Random access times as fast as 55 ns

■ Power consumption (typical values at 10 MHz )

- 45 mA active read current
- 17 mA program/erase current
$-0.2 \mu \mathrm{~A}$ typical standby mode current


## Software Features

■ Software command-set compatible with JEDEC 42.4 standard

- Backward compatible with Am29F, Am29LV, Am29DL, and AM29PDL families and MBM29QM/RM, MBM29LV, MBM29DL, MBM29PDL families
- CFI (Common Flash Interface) compliant
- Provides device-specific information to the system, allowing host software to easily reconfigure for different Flash devices
■ Erase Suspend / Erase Resume
- Suspends an erase operation to allow read or program operations in other sectors of same bank
- Program Suspend / Program Resume
- Suspends a program operation to allow read operation from sectors other than the one being programmed
- Unlock Bypass Program command
- Reduces overall programming time when issuing multiple program command sequences


## Hardware Features

■ Ready/Busy\# pin (RY/BY\#)

- Provides a hardware method of detecting program or erase cycle completion
- Hardware reset pin (RESET\#)
- Hardware method to reset the device to reading array data

■ WP\#/ ACC (Write Protect/Acceleration) input

- At $\mathrm{V}_{\mathrm{IL}}$, hardware level protection for the first and last two 4 K word sectors.
- At $\mathrm{V}_{\mathrm{IH}}$, allows removal of sector protection
- At $\mathrm{V}_{\mathrm{HH}}$, provides accelerated programming in a factory setting
- Persistent Sector Protection
- A command sector protection method to lock combinations of individual sectors and sector groups to prevent program or erase operations within that sector
- Sectors can be locked and unlocked in-system at $\mathrm{V}_{\mathrm{CC}}$ level

■ Password Sector Protection

- A sophisticated sector protection method to lock combinations of individual sectors and sector groups to prevent program or erase operations within that sector using a user-defined 64-bit password
- Package options
- Standard discrete pinouts $11 \times 8 \mathrm{~mm}, 80$-ball Fine-pitch BGA (PL127J) (VBG080) $8.15 \times 6.15 \mathrm{~mm}, 48$-ball Fine pitch BGA (PL064J/PL032J) (VBK048)
- MCP-compatible pinout $8 \times 11.6 \mathrm{~mm}, 64$-ball Fine-pitch BGA (PL127J) $7 \times 9 \mathrm{~mm}, 56$-ball Fine-pitch BGA (PL064J and PL032J) Compatible with MCP pinout, allowing easy integration of RAM into existing designs
$-20 \times 14 \mathrm{~mm}, 56$-pin TSOP (PL127J) (TS056)


## Contents

Distinctive Characteristics ..... 1

1. General Description ..... 4
2. Simultaneous Read/Write Operation with Zero Latency ..... 4
2.1 Page Mode Features ..... 5
2.2 Standard Flash Memory Features ..... 5
3. Ordering Information ..... 6
4. Product Selector Guide ..... 8
5. Block Diagram ..... 8
6. Simultaneous Read/Write Block Diagram ..... 9
7. Simultaneous Read/Write Block Diagram (PL129J) ..... 10
8. Connection Diagrams ..... 11
8.1 Special Package Handling Instructions ..... 11
8.2 80-Ball Fine-Pitch BGA-PL127J ..... 11
8.3 64-Ball Fine-Pitch BGA-MCP Compatible-PL127J ..... 12
8.4 48-Ball Fine-Pitch BGA, PL064J and PL032J ..... 13
8.5 56-Pin TSOP $20 \times 14 \mathrm{~mm}$ ..... 14
8.6 56-Ball Fine-Pitch Ball Grid Array, PL064J and PL032J ..... 15
9. Pin Description ..... 16
10. Logic Symbol ..... 17
11. Device Bus Operations ..... 17
11.1 Requirements for Reading Array Data ..... 18
11.2 Simultaneous Read/Write Operation ..... 19
11.3 Writing Commands/Command Sequences ..... 19
11.4 Standby Mode ..... 20
11.5 Automatic Sleep Mode ..... 20
11.6 RESET\#: Hardware Reset Pin ..... 20
11.7 Output Disable Mode ..... 21
11.8 Autoselect Mode ..... 43
11.9 Selecting a Sector Protection Mode ..... 47
12. Sector Protection ..... 49
12.1 Persistent Sector Protection ..... 49
12.2 Password Sector Protection ..... 49
12.3 WP\# Hardware Protection ..... 49
12.4 Selecting a Sector Protection Mode ..... 49
13. Persistent Sector Protection ..... 50
13.1 Persistent Protection Bit (PPB) ..... 50
13.2 Persistent Protection Bit Lock (PPB Lock) ..... 50
13.3 Dynamic Protection Bit (DYB) ..... 50
13.4 Persistent Sector Protection Mode Locking Bit ..... 51
14. Password Protection Mode ..... 52
14.1 Password and Password Mode Locking Bit ..... 52
14.2 64-bit Password ..... 52
14.3 Write Protect (WP\#) ..... 53
14.4 High Voltage Sector Protection ..... 53
14.5 Temporary Sector Unprotect ..... 55
14.6 Secured Silicon Sector Flash Memory Region ..... 55
14.7 Hardware Data Protection ..... 57
15. Common Flash Memory Interface (CFI) ..... 58
16. Command Definitions ..... 61
16.1 Reading Array Data ..... 61
16.2 Reset Command ..... 61
16.3 Autoselect Command Sequence ..... 62
16.4 Enter/Exit Secured Silicon Sector Command Sequence ..... 62
16.5 Word Program Command Sequence ..... 63
16.6 Chip Erase Command Sequence ..... 64
16.7 Sector Erase Command Sequence ..... 65
16.8 Erase Suspend/Erase Resume Commands ..... 66
16.9 Program Suspend/Program Resume Commands ..... 67
16.10Command Definitions Tables ..... 67
17. Write Operation Status ..... 71
17.1 DQ7: Data\# Polling ..... 71
17.2 RY/BY\#: Ready/Busy\# ..... 72
17.3 DQ6: Toggle Bit I ..... 72
17.4 DQ2: Toggle Bit II ..... 74
17.5 Reading Toggle Bits DQ6/DQ2 ..... 74
17.6 DQ5: Exceeded Timing Limits ..... 74
17.7 DQ3: Sector Erase Timer ..... 75
18. Absolute Maximum Ratings ..... 76
19. Operating Ranges ..... 77
20. DC Characteristics ..... 78
21. AC Characteristics ..... 79
21.1 Test Conditions ..... 79
21.2 Switching Waveforms ..... 80
21.3 Read Operations ..... 80
21.4 Reset ..... 82
21.5 Erase/Program Operations ..... 83
21.6 Timing Diagrams ..... 84
22. Protect/Unprotect ..... 88
22.1 Controlled Erase Operations ..... 90
23. Pin Capacitance ..... 93
23.1 BGA Pin Capacitance ..... 93
23.2 TSOP Pin Capacitance ..... 93
24. Physical Dimensions ..... 94
24.1 VBG080-80-Ball Fine-pitch Ball Grid Array $8 \times 11 \mathrm{~mm}$ Package (PL127J) ..... 94
24.2 VBH064-64-Ball Fine-pitch Ball Grid Array $8 \times 11.6 \mathrm{~mm}$ package (PL127J) ..... 95
24.3 VBK048-48-Ball Fine-pitch Ball Grid Array $8.15 \times 6.15 \mathrm{~mm}$ package (PL032J and PL064J) ..... 96
24.4 VBU056-56-Ball Fine-pitch BGA $7 \times 9 \mathrm{~mm}$ package (PL064J and PL032J) ..... 97
24.5 TS056-20 $\times 14 \mathrm{~mm}, 56$-pin TSOP (PL127J) ..... 98
25. Revision Summary ..... 99

## 1. General Description

The PL127J/PL129J/PL064J/PL032J is a 128/128/64/32 Mbit, 3.0 volt-only Page Mode and Simultaneous Read/Write Flash memory device organized as $8 / 8 / 4 / 2$ Mwords. The devices are offered in the following packages:

- $11 \mathrm{~mm} \times 8 \mathrm{~mm}, 80$-ball Fine-pitch BGA standalone (PL127J)
- $8 \mathrm{~mm} \times 11.6 \mathrm{~mm}$, 64-ball Fine-pitch BGA multi-chip compatible (PL127J)
- $8.15 \mathrm{~mm} \times 6.15 \mathrm{~mm}$, 48-ball Fine-pitch BGA standalone (PL064J/PL032J)
- $7 \mathrm{~mm} \times 9 \mathrm{~mm}, 56$-ball Fine-pitch BGA multi-chip compatible (PL064J and PL032J)
- $20 \mathrm{~mm} \times 14 \mathrm{~mm}, 56$-pin TSOP (PL127J)

The word-wide data (x16) appears on DQ15-DQ0. This device can be programmed in-system or in standard EPROM programmers. $\mathrm{A} 12.0 \mathrm{~V} \mathrm{~V}_{\mathrm{PP}}$ is not required for write or erase operations.

## 2. Simultaneous Read/Write Operation with Zero Latency

The Simultaneous Read/Write architecture provides simultaneous operation by dividing the memory space into 4 banks, which can be considered to be four separate memory arrays as far as certain operations are concerned. The device can improve overall system performance by allowing a host system to program or erase in one bank, then immediately and simultaneously read from another bank with zero latency (with two simultaneous operations operating at any one time). This releases the system from waiting for the completion of a program or erase operation, greatly improving system performance.
The device can be organized in both top and bottom sector configurations. The banks are organized as follows:

| Bank | PL127J Sectors | PL064J Sectors | PL032J Sectors |
| :---: | :---: | :---: | :---: |
| A | $16 \mathrm{Mbit}(4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 31)$ | $8 \mathrm{Mbit}(4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 15)$ | $4 \mathrm{Mbit}(4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 7)$ |
| B | $48 \mathrm{Mbit}(32 \mathrm{Kw} \times 96)$ | $24 \mathrm{Mbit}(32 \mathrm{Kw} \times 48)$ | $12 \mathrm{Mbit}(32 \mathrm{Kw} \times 24)$ |
| C | $48 \mathrm{Mbit}(32 \mathrm{Kw} \times 96)$ | $24 \mathrm{Mbit}(32 \mathrm{Kw} \times 48)$ | $12 \mathrm{Mbit}(32 \mathrm{Kw} \times 24)$ |
| D | $16 \mathrm{Mbit}(4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 31)$ | $8 \mathrm{Mbit}(4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 15)$ | $4 \mathrm{Mbit}(4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 7)$ |


| Bank | PL129J Sectors | CE\# Control |
| :---: | :---: | :---: |
| 1 A | $16 \mathrm{Mbit}(4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 31)$ | CE1\# |
| 1 B | $48 \mathrm{Mbit}(32 \mathrm{Kw} \times 96)$ | CE1\# |
| 2A | $48 \mathrm{Mbit}(32 \mathrm{Kw} \times 96)$ | CE2\# |
| 2B | $16 \mathrm{Mbit}(4 \mathrm{Kw} \times 8$ and $32 \mathrm{Kw} \times 31)$ | CE2\# |

### 2.1 Page Mode Features

The page size is 8 words. After initial page access is accomplished, the page mode operation provides fast read access speed of random locations within that page.

### 2.2 Standard Flash Memory Features

The device requires a single 3.0 volt power supply ( 2.7 V to 3.6 V ) for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations.
The device is entirely command set compatible with the JEDEC 42.4 single-power-supply Flash standard. Commands are written to the command register using standard microprocessor write timing. Register contents serve as inputs to an internal state-machine that controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from other Flash or EPROM devices.

Device programming occurs by executing the program command sequence. The Unlock Bypass mode facilitates faster programming times by requiring only two write cycles to program data instead of four. Device erasure occurs by executing the erase command sequence.

The host system can detect whether a program or erase operation is complete by reading the DQ7 (Data\# Polling) and DQ6 (toggle) status bits. After a program or erase cycle has been completed, the device is ready to read array data or accept another command.

The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the data contents of other sectors. The device is fully erased when shipped from the factory.

Hardware data protection measures include a low $\mathrm{V}_{\mathrm{CC}}$ detector that automatically inhibits write operations during power transitions. The hardware sector protection feature disables both program and erase operations in any combination of sectors of memory. This can be achieved in-system or via programming equipment.

The Erase Suspend/Erase Resume feature enables the user to put erase on hold for any period of time to read data from, or program data to, any sector that is not selected for erasure. True background erase can thus be achieved. If a read is needed from the Secured Silicon Sector area (One Time Program area) after an erase suspend, then the user must use the proper command sequence to enter and exit this region.

The Program Suspend/Program Resume feature enables the user to hold the program operation to read data from any sector that is not selected for programming. If a read is needed from the Secured Silicon Sector area, Persistent Protection area, Dynamic Protection area, or the CFI area, after a program suspend, then the user must use the proper command sequence to enter and exit this region.

The device offers two power-saving features. When addresses have been stable for a specified amount of time, the device enters the automatic sleep mode. The system can also place the device into the standby mode. Power consumption is greatly reduced in both these modes. The device electrically erases all bits within a sector simultaneously via Fowler-Nordheim tunneling. The data is programmed using hot electron injection.

## 3. Ordering Information

The order number (Valid Combination) is formed by a valid combinations of the following:


## Valid Combinations to be Supported for this Device

| 128 Mb Products Based on 110 nm Floating Gate Technology |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Device Number/ <br> Description | Speed (ns) | Package <br> Type | Temperature <br> Range | Additional <br> Ordering Options | CE\# <br> Configuration |  |
| S29PL127J | $60,65,70$ | BF, TF | W, I | 00,13 | Single CE\# |  |
| S29PL127J | 80 | BF | W, I | 01 | Single CE\# |  |
| S29PL127J | 80 | TF | W, I | 14 | Single CE\# |  |


| 64 Mb Products Based on 110 nm Floating Gate Technology |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Device Number/ <br> Description | Speed (ns) | Package <br> Type | Temperature <br> Range | Additional <br> Ordering Options |  |
| S29PL064J | $55,60,70$ | BF | W, I | 12,15 |  |


| 32 Mb Products Based on 110 nm Floating Gate Technology |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Device Number/ <br> Description | Speed (ns) | Package Type | Temperature Range | Additional Ordering <br> Options |
| S29PL032J | $55,60,70$ | BF | W, I | 12,15 |


| Valid Combinations for BGA Packages |  |  |
| :---: | :---: | :---: |
| Order Number (Note 1) | Speed (ns) | $\mathbf{V}_{\mathbf{I O}}$ Range |
| PL129J, PL127J,PL064J, PL032J | $55,60,65,70(3)$ | $2.7-3.6$ |
| PL129J, PL127J | 80 | $1.65-1.95$ |

## Notes

1. Please contact the factory for PL129J availability.
2. BGA package marking omits leading S29 and packing type designator from ordering part number
3. 55 ns speed only supported for PL032J and PL127J.

| Valid Combinations for TSOP Packages |  |  |
| :---: | :---: | :---: |
| Order Number | Speed (ns) | V $_{\mathbf{1 0}}$ Range |
| S29PL127J | 60,70 | $2.7-3.6$ |

Note
TSOP package markings omit packing type designator from ordering part number.

## 4. Product Selector Guide

| Part Number $\rightarrow$ | S29PL032J/S29PL064J/S29PL0127J/S29PL129J |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {IO }}=2.7 \mathrm{~V}-3.6 \mathrm{~V}$ | 55 (See Note) | 60 | 65 | - | 70 |
| Speed Option $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IO}}=1.65 \mathrm{~V}-1.95 \mathrm{~V} \\ & \text { (PL127J and PL129J only) } \end{aligned}$ | - | - | - | 80 | - |
| Max Access Time, ns ( $\mathrm{t}_{\mathrm{ACC}}$ ) | 55 (See Note) | 60 | 65 | 80 | 70 |
| Max CE\# Access, ns ( $\mathrm{t}_{\mathrm{CE}}$ ) |  |  |  |  |  |
| Max Page Access, ns (tpAcc) | 20 (See Note) | 25 |  | 30 | 30 |
| Max OE\# Access, ns (toe) |  |  |  |  |  |

Note
55 ns speed bin only supported for PL032J and PL064J.

## 5. Block Diagram



## Notes

1. RY/BY\# is an open drain output.
2. Amax = A22 (PL127J), A21 (PL129J and PL064J), A20 (PL032J)
3. For PL129J, there are two CE\# (CE1\# and CE2\#).

S29PL-J
6. Simultaneous Read/Write Block Diagram


Note
Amax = A22 (PL127J), A21 (PL064J), A20 (PL032J)

S29PL-J
7. Simultaneous Read/Write Block Diagram (PL129J)


Note
Amax = A21 (PL129J)

## 8. Connection Diagrams

### 8.1 Special Package Handling Instructions

### 8.1.1 TSOP, BGA, PDIP, SSOP, and PLCC Packages

Special handling is required for Flash Memory products in molded packages.
The package and/or data integrity may be compromised if the package body is exposed to temperatures above $150^{\circ} \mathrm{C}$ for prolonged periods of time.

### 8.1.2 FBGA Packages

Special handling is required for Flash Memory products in FBGA packages.
Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic cleaning methods. The package and/or data integrity may be compromised if the package body is exposed to temperatures above $150^{\circ} \mathrm{C}$ for prolonged periods of time.

### 8.2 80-Ball Fine-Pitch BGA-PL127J

Figure 8.1 80-Ball Fine-Pitch BGA, Top View, Balls Facing Down—PL127J


### 8.3 64-Ball Fine-Pitch BGA—MCP Compatible—PL127J

Figure 8.2 64-Ball Fine-Pitch BGA, MCP Compatible, Top View, Balls Facing Down—PL127J


### 8.4 48-Ball Fine-Pitch BGA, PL064J and PL032J

Figure 8.3 48-Ball Fine-Pitch BGA, Top View, Balls Facing Down—PL064J—PL032J: C4(A21)=NC
Ans

## $8.5 \quad$ 56-Pin TSOP $20 \times 14 \mathrm{~mm}$

Figure 8.4 56-Pin TSOP $20 \times 14 \mathrm{~mm}$ Configuration—PL127J


For this family of products, a single multi-chip compatible package (TSOP) is offered for each density to allow both standalone and multi-chip qualification using a single, adaptable package. This new methodology allows package standardization resulting in faster development. The multi-chip compatible package includes all the pins required for standalone device operation and verification. In addition, extra pins are included for insertion of common data storage or logic devices to be used for multi-chip products. If a standalone device is required, the extra multi-chip specific pins are not connected and the standalone device operates normally. The multi-chip compatible package sizes were chosen to serve the largest number of combinations possible. There are only a few cases where a larger package size would be required to accommodate the multi-chip combination. This multi-chip compatible package set does not allow for direct package migration from the Am29BDS128H, Am29BDS128G, Am29BDS640G products, which use legacy standalone packages.

### 8.6 56-Ball Fine-Pitch Ball Grid Array, PL064J and PL032J

Figure 8.5 56-ball Fine-Pitch BGA, Top View, Balls Facing Down,—PL064J and PL032J,


## 9. Pin Description

Table 9.1 Pin Description

|  |  |
| :---: | :---: |
| Amax-A0 | Address bus |
| DQ15-DQ0 | 16-bit data inputs/outputs/float |
| CE\# | Chip Enable Inputs |
| OE\# | Output Enable Input |
| WE\# | Write Enable |
| $\mathrm{V}_{\text {SS }}$ | Device Ground |
| NC | Not Connected. No device internal signal is connected to the package connector nor is there any future plan to use the connector for a signal. The connection may safely be used for routing space for a signal on a Printed Circuit Board (PCB). |
| RFU | Reserved for Future Use. Not currently connected internally but the pin/ball location should be left unconnected and unused by PCB routing channel for future compatibility. The pin/ball may be used by a signal in the future. |
| RY/BY\# | Ready/Busy output and open drain. <br> When RY/BY\#= $\mathrm{V}_{I H}$, the device is ready to accept read operations and commands. When RY/BY\#= $\mathrm{V}_{\mathrm{OL}}$, the device is either executing an embedded algorithm or the device is executing a hardware reset operation. |
| WP\#/ACC | Write Protect/Acceleration Input. <br> When WP\#/ACC= $\mathrm{V}_{\mathrm{IL}}$, the highest and lowest two 4K-word sectors are write protected regardless of other sector protection configurations. When WP\#/ACC= $\mathrm{V}_{I H}$, these sector are unprotected unless the DYB or PPB is programmed. When WP\#/ACC= $V_{H H}$, program and erase operations are accelerated. |
| $\mathrm{V}_{10}$ | Input/Output Buffer Power Supply <br> (1.65 V to 1.95 V (for PL127J and PL129J) or 2.7 V to 3.6 V (for all PLxxxJ devices)) |
| $\mathrm{V}_{\mathrm{CC}}$ | Chip Power Supply <br> (2.7 V to 3.6 V or 2.7 to 3.3 V ) |
| RESET\# | Hardware Reset Pin |
| CE1\#, CE2\# | Chip Enable Inputs. <br> CE1\# controls the 64 Mb in Banks 1 A and 1 B . <br> CE2\# controls the 64 Mb in Banks 2A and 2B. (Only for PL129J) |

Note
Amax = A22 (PL127J), A21 (PL129J and PL064J), A20 (PL032J)

## 10. Logic Symbol



## 11. Device Bus Operations

This section describes the requirements and use of the device bus operations, which are initiated through the internal command register. The command register itself does not occupy any addressable memory location. The register is a latch used to store the commands, along with the address and data information needed to execute the command. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device. Table 11.1 lists the device bus operations, the inputs and control levels they require, and the resulting output. The following subsections describe each of these operations in further detail.

Table 11.1 PL127J Device Bus Operations

| Operation | CE\# | OE\# | WE\# | RESET\# | $\begin{aligned} & \text { WP\#/ } \\ & \text { ACC } \end{aligned}$ | Addresses <br> (Amax-A0) | DQ15-DQ0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Read | L | L | H | H | X | $\mathrm{A}_{\text {IN }}$ | DOUT |
| Write | L | H | L | H | (Note 2) | $\mathrm{A}_{\text {IN }}$ | $\mathrm{D}_{\text {IN }}$ |
| Standby | $\mathrm{V}_{10} \pm 0.3 \mathrm{~V}$ | X | X | $\mathrm{V}_{10} \pm 0.3 \mathrm{~V}$ | (Note 2) | X | High-Z |
| Output Disable | L | H | H | H | X | X | High-Z |
| Reset | X | X | X | L | X | X | High-Z |
| Temporary Sector Unprotect (High Voltage) | X | X | X | $\mathrm{V}_{\text {ID }}$ | X | $\mathrm{A}_{\text {IN }}$ | $\mathrm{D}_{\text {IN }}$ |

Table 11.2 PL129J Device Bus Operations

| Operation | CE1\# | CE2\# | OE\# | WE\# | RESET\# | WP\#/ACC | Addresses (A21-A0) | DQ15-DQ0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Read | L | H | L | H | H | X | $\mathrm{A}_{\text {IN }}$ | Dout |
|  | H | L |  |  |  |  |  |  |
| Write | L | H | H | L | H | X (Note 2) | $\mathrm{A}_{\text {IN }}$ | $\mathrm{D}_{\mathrm{IN}}$ |
|  | H | L |  |  |  |  |  |  |
| Standby | $\mathrm{V}_{10} \pm 0.3 \mathrm{~V}$ | $\mathrm{V}_{10} \pm 0.3 \mathrm{~V}$ | X | X | $\mathrm{V}_{\mathrm{IO}} \pm 0.3$ | X | X | High-Z |
| Output Disable | L | L | H | H | H | X | X | High-Z |
| Reset | X | X | X | X | L | X | X | High-Z |
| Temporary Sector Unprotect (High Voltage) | X | X | X | X | $V_{\text {ID }}$ | X | $\mathrm{A}_{\text {IN }}$ | $\mathrm{D}_{\text {IN }}$ |

## Legend:

L = Logic Low = VIL, $H=$ Logic High $=V_{I H}, V_{I D}=11.5-12.5 \mathrm{~V}, V_{H H}=8.5-9.5 \mathrm{~V}, X=$ Don't Care, SA $=$ Sector Address, $A_{I N}=$ Address In, $D_{I N}=$ Data In, $D_{O U T}=$ Data Out
Notes

1. The sector protect and sector unprotect functions may also be implemented via programming equipment. See High Voltage Sector Protection on page 53.
2. WP\#/ACC must be high when writing to upper two and lower two sectors.

### 11.1 Requirements for Reading Array Data

To read array data from the outputs, the system must drive the OE\# and appropriate CE\# pins (For PL129J - CE1\#/CE2\# pins) to $\mathrm{V}_{\mathrm{IL}}$. In PL129J, CE1\# and CE2\# are the power control and select the lower (CE1\#) or upper (CE2\#) halves of the device. CE\# is the power control. OE\# is the output control and gates array data to the output pins. WE\# should remain at $\mathrm{V}_{\mathrm{IH}}$.
The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no spurious alteration of the memory content occurs during the power transition. No command is necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid addresses on the device address inputs produce valid data on the device data outputs. Each bank remains enabled for read access until the command register contents are altered.
Refer to Table 22.3 on page 91 for timing specifications and to Figure 21.3 on page 81 for the timing diagram. $\mathrm{I}_{\mathrm{CC} 1}$ in the DC Characteristics table represents the active current specification for reading array data.

### 11.1.1 Random Read (Non-Page Read)

Address access time ( $\mathrm{t}_{\mathrm{ACC}}$ ) is equal to the delay from stable addresses to valid output data. The chip enable access time ( $\mathrm{t}_{\mathrm{CE}}$ ) is the delay from the stable addresses and stable CE\# to valid data at the output inputs. The output enable access time is the delay from the falling edge of the $\mathrm{OE} \#$ to valid data at the output inputs (assuming the addresses have been stable for at least $\mathrm{t}_{\mathrm{ACC}}{ }^{-t_{\mathrm{OE}}}$ time).

### 11.1.2 Page Mode Read

The device is capable of fast page mode read and is compatible with the page mode Mask ROM read operation. This mode provides faster read access speed for random locations within a page. Address bits Amax-A3 select an 8 word page, and address bits A2-A0 select a specific word within that page. This is an asynchronous operation with the microprocessor supplying the specific word location.

The random or initial page access is $t_{A C C}$ or $t_{C E}$ and subsequent page read accesses (as long as the locations specified by the microprocessor falls within that page) is equivalent to tpAcc. When CE\# (CE1\# and CE\#2 in PL129J) is deasserted ( $=\mathrm{V}_{\text {IH }}$ ), the reassertion of CE\# (CE1\# or CE\#2 in PL129J) for subsequent access has access time of $\mathrm{t}_{\mathrm{ACC}}$ or $\mathrm{t}_{\mathrm{CE}}$. Here again, CE\# (CE1\# /CE\#2 in PL129J)selects the device and OE\# is the output control and should be used to gate data to the output inputs if the device is selected. Fast page mode accesses are obtained by keeping Amax-A3 constant and changing A2-A0 to select the specific word within that page.

Table 11.3 Page Select

| Word | A2 | A1 | A0 |
| :---: | :---: | :---: | :---: |
| Word 0 | 0 | 0 | 0 |
| Word 1 | 0 | 0 | 1 |
| Word 2 | 0 | 1 | 0 |
| Word 3 | 0 | 1 | 1 |
| Word 4 | 1 | 0 | 0 |
| Word 5 | 1 | 0 | 1 |
| Word 6 | 1 | 1 | 0 |
| Word 7 | 1 | 1 | 1 |

### 11.2 Simultaneous Read/Write Operation

In addition to the conventional features (read, program, erase-suspend read, erase-suspend program, and program-suspend read), the device is capable of reading data from one bank of memory while a program or erase operation is in progress in another bank of memory (simultaneous operation). The bank can be selected by bank addresses (PL127J: A22-A20, PL129J and PL064J: A21A19, PL032J: A20-A18) with zero latency.
The simultaneous operation can execute multi-function mode in the same bank.
Table 11.4 Bank Select

| Bank | PL127J: A22-A20, PL064J: A21-A19, PL032J: A20-A18 |
| :---: | :---: |
| Bank A | 000 |
| Bank B | $001,010,011$ |
| Bank C | $100,101,110$ |
| Bank D | 111 |


| Bank | CE1\# | CE2\# | PL129J: A21-A20 |
| :---: | :---: | :---: | :---: |
| Bank 1A | 0 | 1 | 00 |
| Bank 1B | 0 | 1 | $01,10,11$ |
| Bank 2A | 1 | 0 | $00,01,10$ |
| Bank 2B | 1 | 0 | 11 |

### 11.3 Writing Commands/Command Sequences

To write a command or command sequence (which includes programming data to the device and erasing sectors of memory), the system must drive WE\# and CE\# (CE1\# or CE\#2 in PL129J) to $\mathrm{V}_{\mathrm{IL}}$, and OE\# to $\mathrm{V}_{\mathrm{IH}}$.

The device features an Unlock Bypass mode to facilitate faster programming. Once a bank enters the Unlock Bypass mode, only two write cycles are required to program a word, instead of four. Word Program Command Sequence on page 63 has details on programming data to the device using both standard and Unlock Bypass command sequences.

An erase operation can erase one sector, multiple sectors, or the entire device. Table 11.4 on page 19 indicates the set of address space that each sector occupies. A "bank address" is the set of address bits required to uniquely select a bank. Similarly, a "sector address" refers to the address bits required to uniquely select a sector. Command Definitions on page 61 has details on erasing a sector or the entire chip, or suspending/resuming the erase operation.
$I_{\mathrm{CC} 2}$ in the DC Characteristics on page 78 represents the active current specification for the write mode. See the timing specification tables and timing diagrams in section Reset on page 82 for write operations.

### 11.3.1 Accelerated Program Operation

The device offers accelerated program operations through the ACC function. This function is primarily intended to allow faster manufacturing throughput at the factory.

If the system asserts $\mathrm{V}_{\mathrm{HH}}$ on this pin, the device automatically enters the aforementioned Unlock Bypass mode, temporarily unprotects any protected sectors, and uses the higher voltage on the pin to reduce the time required for program operations. The system would use a two-cycle program command sequence as required by the Unlock Bypass mode. Removing $\mathrm{V}_{\mathrm{HH}}$ from the WP\#/ ACC pin returns the device to normal operation. Note that $V_{H H}$ must not be asserted on WP\#/ACC for operations other than accelerated programming, or device damage may result. In addition, the WP\#/ACC pin should be raised to $V_{C C}$ when not in use. That is, the WP\#/ACC pin should not be left floating or unconnected; inconsistent behavior of the device may result.

### 11.3.2 Autoselect Functions

If the system writes the autoselect command sequence, the device enters the autoselect mode. The system can then read autoselect codes from the internal register (which is separate from the memory array) on DQ15-DQ0. Standard read cycle timings apply in this mode. Refer to the Table 11.9, Secured Silicon Sector Addresses on page 42 and Autoselect Command Sequence on page 62 for more information.

### 11.4 Standby Mode

When the system is not reading or writing to the device, it can place the device in the standby mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state, independent of the OE\# input.

The device enters the CMOS standby mode when the CE\# (CE1\#,CE\#2 in PL129J) and RESET\# pins are both held at $\mathrm{V}_{\mathrm{IO}} \pm 0.3 \mathrm{~V}$. (Note that this is a more restricted voltage range than $\mathrm{V}_{\mathrm{IH}}$.) If CE\# (CE1\#,CE\#2 in PL129J) and RESET\# are held at $\mathrm{V}_{\mathrm{IH}}$, but not within $\mathrm{V}_{1 \mathrm{O}} \pm 0.3 \mathrm{~V}$, the device will be in the standby mode, but the standby current will be greater. The device requires standard access time ( $\mathrm{t}_{\mathrm{CE}}$ ) for read access when the device is in either of these standby modes, before it is ready to read data.
If the device is deselected during erasure or programming, the device draws active current until the operation is completed.
ICC3 in DC Characteristics on page 78 represents the CMOS standby current specification.

### 11.5 Automatic Sleep Mode

The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when addresses remain stable for $\mathrm{t}_{\mathrm{ACC}}+30 \mathrm{~ns}$. The automatic sleep mode is independent of the CE\#, WE\#, and OE\# control signals. Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and always available to the system. Note that during automatic sleep mode, OE\# must be at $\mathrm{V}_{\mathrm{IH}}$ before the device reduces current to the stated sleep mode specification. I $\mathrm{CC5}$ in DC Characteristics on page 78 represents the automatic sleep mode current specification.

### 11.6 RESET\#: Hardware Reset Pin

The RESET\# pin provides a hardware method of resetting the device to reading array data. When the RESET\# pin is driven low for at least a period of $t_{\mathrm{RP}}$, the device immediately terminates any operation in progress, tristates all output pins, and ignores all read/ write commands for the duration of the RESET\# pulse. The device also resets the internal state machine to reading array data. The operation that was interrupted should be reinitiated once the device is ready to accept another command sequence, to ensure data integrity.
Current is reduced for the duration of the RESET\# pulse. When RESET\# is held at $\mathrm{V}_{\text {SS }} \pm 0.3 \mathrm{~V}$, the device draws CMOS standby current (ICC4). If RESET\# is held at $\mathrm{V}_{\text {IL }}$ but not within $\mathrm{V}_{\mathrm{SS}} \pm 0.3 \mathrm{~V}$, the standby current will be greater.
The RESET\# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash memory, enabling the system to read the boot-up firmware from the Flash memory.
If RESET\# is asserted during a program or erase operation, the RY/BY\# pin remains a " 0 " (busy) until the internal reset operation is complete, which requires a time of $t_{\text {READY }}$ (during Embedded Algorithms). The system can thus monitor RY/BY\# to determine whether the reset operation is complete. If RESET\# is asserted when a program or erase operation is not executing (RY/BY\# pin is " 1 "), the reset operation is completed within a time of $t_{\text {READY }}$ (not during Embedded Algorithms). The system can read data $\mathrm{t}_{\mathrm{RH}}$ after the RESET\# pin returns to $\mathrm{V}_{\mathrm{IH}}$.
Refer to the tables in AC Characteristic on page 79 for RESET\# parameters and to Figure 21.5 on page 82 for the timing diagram.

### 11.7 Output Disable Mode

When the OE\# input is at $\mathrm{V}_{I H}$, output from the device is disabled. The output pins (except for RY/BY\#) are placed in the highest Impedance state

Table 11.5 PL127J Sector Architecture

| Bank | Sector | Sector Address (A22-A12) | Sector Size (Kwords) | Address Range (x16) |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbb{4} \\ & \stackrel{\rightharpoonup}{\bar{N}} \\ & \text { © } \end{aligned}$ | SAO | 00000000000 | 4 | 000000h-000FFFh |
|  | SA1 | 00000000001 | 4 | 001000h-001FFFh |
|  | SA2 | 00000000010 | 4 | 002000h-002FFFh |
|  | SA3 | 00000000011 | 4 | 003000h-003FFFh |
|  | SA4 | 00000000100 | 4 | 004000h-004FFFh |
|  | SA5 | 00000000101 | 4 | 005000h-005FFFh |
|  | SA6 | 00000000110 | 4 | 006000h-006FFFh |
|  | SA7 | 00000000111 | 4 | 007000h-007FFFh |
|  | SA8 | 00000001 XXX | 32 | 008000h-00FFFFh |
|  | SA9 | 00000010XXX | 32 | 010000h-017FFFh |
|  | SA10 | 00000011XXX | 32 | 018000h-01FFFFh |
|  | SA11 | 00000100XXX | 32 | 020000h-027FFFh |
|  | SA12 | 00000101XXX | 32 | 028000h-02FFFFh |
|  | SA13 | 00000110XXX | 32 | 030000h-037FFFh |
|  | SA14 | 00000111XXX | 32 | 038000h-03FFFFh |
|  | SA15 | 00001000XXX | 32 | 040000h-047FFFh |
|  | SA16 | 00001001XXX | 32 | 048000h-04FFFFh |
| $\begin{aligned} & \mathbb{4} \\ & \text { 裔 } \end{aligned}$ | SA17 | 00001010XXX | 32 | 050000h-057FFFh |
|  | SA18 | 00001011XXX | 32 | 058000h-05FFFFh |
|  | SA19 | 00001100XXX | 32 | 060000h-067FFFh |
|  | SA20 | 00001101 XXX | 32 | 068000h-06FFFFh |
|  | SA21 | 00001110XXX | 32 | 070000h-077FFFh |
|  | SA22 | 00001111XXX | 32 | 078000h-07FFFFh |
|  | SA23 | 00010000XXX | 32 | 080000h-087FFFh |
|  | SA24 | 00010001XXX | 32 | 088000h-08FFFFFh |
|  | SA25 | 00010010XXX | 32 | 090000h-097FFFh |
|  | SA26 | 00010011XXX | 32 | 098000h-09FFFFh |
|  | SA27 | 00010100XXX | 32 | 0A0000h-0A7FFFh |
|  | SA28 | 00010101XXX | 32 | 0A8000h-0AFFFFh |
|  | SA29 | 00010110XXX | 32 | 0B0000h-0B7FFFh |
|  | SA30 | 00010111XXX | 32 | 0B8000h-0BFFFFh |
|  | SA31 | 00011000XXX | 32 | 0C0000h-0C7FFFh |
|  | SA32 | 00011001XXX | 32 | 0C8000h-0CFFFFh |
|  | SA33 | 00011010XXX | 32 | 0D0000h-0D7FFFh |
|  | SA34 | 00011011XXX | 32 | 0D8000h-0DFFFFh |
|  | SA35 | 00011100XXX | 32 | 0E0000h-0E7FFFh |
|  | SA36 | 00011101XXX | 32 | 0E8000h-0EFFFFh |
|  | SA37 | 00011110XXX | 32 | 0F0000h-0F7FFFh |
|  | SA38 | 00011111XXX | 32 | 0F8000h-0FFFFFF |

S29PL-J

Table 11.5 PL127J Sector Architecture (Continued)

| Bank | Sector | Sector Address (A22-A12) | Sector Size (Kwords) | Address Range (x16) |
| :---: | :---: | :---: | :---: | :---: |
|  | SA39 | 00100000XXX | 32 | 100000h-107FFFh |
|  | SA40 | 00100001XXX | 32 | 108000h-10FFFFh |
|  | SA41 | 00100010XXX | 32 | 110000h-117FFFh |
|  | SA42 | 00100011XXX | 32 | 118000h-11FFFFh |
|  | SA43 | 00100100XXX | 32 | 120000h-127FFFh |
|  | SA44 | 00100101XXX | 32 | 128000h-12FFFFh |
|  | SA45 | 00100110XXX | 32 | 130000h-137FFFh |
|  | SA46 | 00100111XXX | 32 | 138000h-13FFFFh |
|  | SA47 | 00101000XXX | 32 | 140000h-147FFFh |
|  | SA48 | 00101001XXX | 32 | 148000h-14FFFFh |
|  | SA49 | 00101010XXX | 32 | 150000h-157FFFh |
|  | SA50 | 00101011XXX | 32 | 158000h-15FFFFh |
|  | SA51 | 00101100XXX | 32 | 160000h-167FFFh |
|  | SA52 | 00101101XXX | 32 | 168000h-16FFFFh |
|  | SA53 | 00101110XXX | 32 | 170000h-177FFFh |
|  | SA54 | 00101111XXX | 32 | 178000h-17FFFFh |
|  | SA55 | 00110000XXX | 32 | 180000h-187FFFh |
|  | SA56 | 00110001XXX | 32 | 188000h-18FFFFF |
|  | SA57 | 00110010XXX | 32 | 190000h-197FFFh |
|  | SA58 | 00110011XXX | 32 | 198000h-19FFFFh |
|  | SA59 | 00110100XXX | 32 | 1A0000h-1A7FFFh |
|  | SA60 | 00110101XXX | 32 | 1A8000h-1AFFFFh |
|  | SA61 | 00110110XXX | 32 | 1B0000h-1B7FFFh |
|  | SA62 | 00110111XXX | 32 | 188000h-1BFFFFh |
|  | SA63 | 00111000XXX | 32 | 1C0000h-1C7FFFh |
|  | SA64 | 00111001 XXX | 32 | 1C8000h-1CFFFFF |
|  | SA65 | 00111010XXX | 32 | 1D0000h-1D7FFFh |

S29PL-J

Table 11.5 PL127J Sector Architecture (Continued)

| Bank | Sector | Sector Address (A22-A12) | Sector Size (Kwords) | Address Range (x16) |
| :---: | :---: | :---: | :---: | :---: |
| $\infty$$\stackrel{y}{c}$■© | SA66 | 00111011XXX | 32 | 1D8000h-1DFFFFh |
|  | SA67 | 00111100XXX | 32 | 1E0000h-1E7FFFh |
|  | SA68 | 00111101XXX | 32 | 1E8000h-1EFFFFh |
|  | SA69 | 00111110XXX | 32 | 1F0000h-1F7FFFh |
|  | SA70 | 00111111XXX | 32 | 1F8000h-1FFFFFh |
|  | SA71 | 01000000XXX | 32 | 200000h-207FFFh |
|  | SA72 | 01000001XXX | 32 | 208000h-20FFFFh |
|  | SA73 | 01000010XXX | 32 | 210000h-217FFFh |
|  | SA74 | 01000011XXX | 32 | 218000h-21FFFFh |
|  | SA75 | 01000100XXX | 32 | 220000h-227FFFh |
|  | SA76 | 01000101XXX | 32 | 228000h-22FFFFh |
|  | SA77 | 01000110XXX | 32 | 230000h-237FFFh |
|  | SA78 | 01000111XXX | 32 | 238000h-23FFFFh |
|  | SA79 | 01001000XXX | 32 | 240000h-247FFFh |
|  | SA80 | 01001001XXX | 32 | 248000h-24FFFFh |
|  | SA81 | 01001010XXX | 32 | 250000h-257FFFh |
|  | SA82 | 01001011XXX | 32 | 258000h-25FFFFh |
|  | SA83 | 01001100XXX | 32 | 260000h-267FFFh |
|  | SA84 | 01001101XXX | 32 | 268000h-26FFFFh |
|  | SA85 | 01001110XXX | 32 | 270000h-277FFFh |
|  | SA86 | 01001111XXX | 32 | 278000h-27FFFFh |
|  | SA87 | 01010000XXX | 32 | 280000h-287FFFh |
|  | SA88 | 01010001XXX | 32 | 288000h-28FFFFFh |
|  | SA89 | 01010010XXX | 32 | 290000h-297FFFh |
|  | SA90 | 01010011XXX | 32 | 298000h-29FFFFh |
|  | SA91 | 01010100XXX | 32 | 2A0000h-2A7FFFh |
|  | SA92 | 01010101XXX | 32 | 2A8000h-2AFFFFh |
|  | SA93 | 01010110XXX | 32 | 2B0000h-2B7FFFh |
|  | SA94 | 01010111XXX | 32 | 2B8000h-2BFFFFFh |
|  | SA95 | 01011000XXX | 32 | 2C0000h-2C7FFFh |
|  | SA96 | 01011001XXX | 32 | 2C8000h-2CFFFFh |
|  | SA97 | 01011010XXX | 32 | 2D0000h-2D7FFFh |
|  | SA98 | 01011011XXX | 32 | 2D8000h-2DFFFFh |
|  | SA99 | 01011100XXX | 32 | 2E0000h-2E7FFFh |
|  | SA100 | 01011101XXX | 32 | 2E8000h-2EFFFFh |
|  | SA101 | 01011110XXX | 32 | 2F0000h-2F7FFFh |
|  | SA102 | 01011111XXX | 32 | 2F8000h-2FFFFFh |
|  | SA103 | 01100000XXX | 32 | 300000h-307FFFh |
|  | SA104 | 01100001XXX | 32 | 308000h-30FFFFFh |
|  | SA105 | 01100010XXX | 32 | 310000h-317FFFh |
|  | SA106 | 01100011XXX | 32 | 318000h-31FFFFh |
|  | SA107 | 01100100XXX | 32 | 320000h-327FFFh |
|  | SA108 | 01100101XXX | 32 | 328000h-32FFFFh |
|  | SA109 | 01100110XXX | 32 | 330000h-337FFFh |
|  | SA110 | 01100111XXX | 32 | 338000h-33FFFFFh |
|  | SA111 | 01101000XXX | 32 | 340000h-347FFFh |

S29PL-J

Table 11.5 PL127J Sector Architecture (Continued)

| Bank | Sector | Sector Address (A22-A12) | Sector Size (Kwords) | Address Range (x16) |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \infty \\ & \frac{r_{1}^{\prime}}{\check{\widetilde{N}}} \end{aligned}$ | SA115 | 01101100XXX | 32 | 360000h-367FFFh |
|  | SA116 | 01101101XXX | 32 | 368000h-36FFFFh |
|  | SA117 | 01101110XXX | 32 | 370000h-377FFFh |
|  | SA118 | 01101111XXX | 32 | 378000h-37FFFFh |
|  | SA119 | 01110000XXX | 32 | 380000h-387FFFh |
|  | SA120 | 01110001XXX | 32 | 388000h-38FFFFFh |
|  | SA121 | 01110010XXX | 32 | 390000h-397FFFh |
|  | SA122 | 01110011XXX | 32 | 398000h-39FFFFh |
|  | SA123 | 01110100XXX | 32 | 3A0000h-3A7FFFh |
|  | SA124 | 01110101XXX | 32 | 3A8000h-3AFFFFh |
|  | SA125 | 01110110XXX | 32 | 3B0000h-3B7FFFh |
|  | SA126 | 01110111XXX | 32 | 3B8000h-3BFFFFF |
|  | SA127 | 01111000XXX | 32 | 3C0000h-3C7FFFh |
|  | SA128 | 01111001XXX | 32 | 3C8000h-3CFFFFh |
|  | SA129 | 01111010XXX | 32 | 3D0000h-3D7FFFh |
|  | SA130 | 01111011XXX | 32 | 3D8000h-3DFFFFh |
|  | SA131 | 01111100XXX | 32 | 3E0000h-3E7FFFh |
|  | SA132 | 01111101XXX | 32 | 3E8000h-3EFFFFh |
|  | SA133 | 01111110XXX | 32 | 3F0000h-3F7FFFh |
|  | SA134 | 01111111XXX | 32 | 3F8000h-3FFFFFh |

Table 11.5 PL127J Sector Architecture (Continued)

| Bank | Sector | Sector Address (A22-A12) | Sector Size (Kwords) | Address Range (x16) |
| :---: | :---: | :---: | :---: | :---: |
|  | SA135 | 10000000XXX | 32 | 400000h-407FFFh |
|  | SA136 | 10000001XXX | 32 | 408000h-40FFFFh |
|  | SA137 | 10000010XXX | 32 | 410000h-417FFFh |
|  | SA138 | 10000011XXX | 32 | 418000h-41FFFFh |
|  | SA139 | 10000100XXX | 32 | 420000h-427FFFh |
|  | SA140 | 10000101XXX | 32 | 428000h-42FFFFh |
|  | SA141 | 10000110XXX | 32 | 430000h-437FFFh |
|  | SA142 | 10000111XXX | 32 | 438000h-43FFFFh |
|  | SA143 | 10001000XXX | 32 | 440000h-447FFFh |
|  | SA144 | 10001001XXX | 32 | 448000h-44FFFFh |
|  | SA145 | 10001010XXX | 32 | 450000h-457FFFh |
|  | SA146 | 10001011XXX | 32 | 458000h-45FFFFFh |
|  | SA147 | 10001100XXX | 32 | 460000h-467FFFh |
|  | SA148 | 10001101XXX | 32 | 468000h-46FFFFh |
|  | SA149 | 10001110XXX | 32 | 470000h-477FFFh |
|  | SA150 | 10001111XXX | 32 | 478000h-47FFFFh |
|  | SA151 | 10010000XXX | 32 | 480000h-487FFFh |
|  | SA152 | 10010001XXX | 32 | 488000h-48FFFFh |
|  | SA153 | 10010010XXX | 32 | 490000h-497FFFh |
|  | SA154 | 10010011XXX | 32 | 498000h-49FFFFh |
|  | SA155 | 10010100XXX | 32 | 4A0000h-4A7FFFh |
|  | SA156 | 10010101XXX | 32 | 4A8000h-4AFFFFh |
|  | SA157 | 10010110XXX | 32 | 4B0000h-4B7FFFh |
|  | SA158 | 10010111XXX | 32 | 4B8000h-4BFFFFh |
|  | SA159 | 10011000XXX | 32 | 4C0000h-4C7FFFh |
|  | SA160 | 10011001XXX | 32 | 4C8000h-4CFFFFh |
|  | SA161 | 10011010XXX | 32 | 4D0000h-4D7FFFh |
|  | SA162 | 10011011XXX | 32 | 4D8000h-4DFFFFh |
|  | SA163 | 10011100XXX | 32 | 4E0000h-4E7FFFh |

