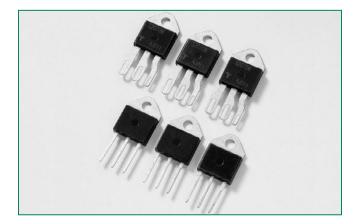
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

RoHS Sxx35x Series

Expertise Applied | Answers Delivered

ittelfuse

Agency Approval				
Agency	Agency File Number			
. ¶	J & K Packages: E71639			

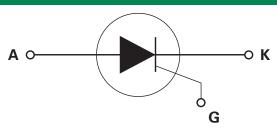
Main Features					
Symbol	Value	Unit			
I _{T(RMS)}	35	А			
V _{DRM} /V _{RRM}	400 to 1000	V			
I _{gt}	40	mA			

Description

Excellent unidirectional switches for phase control applications such as heating and motor speed controls.

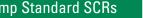
Standard phase control SCRs are triggered with few milliamperes of current at less than 1.5V potential.

Features & Benefits


- RoHS compliant
- Glass passivated junctions
- Voltage capability up to 1000 V
- Surge capability up to 500 A

Applications

Typical applications are AC solid-state switches, industrial power tools, exercise equipment, white goods and commercial appliances.


Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Schematic Symbol

Absolute Maximum Ratings

Symbol	Parameter	Test Conditions	Value	Unit	
I(RMS)	RMS on-state current $T_c = 95^{\circ}C$		35	А	
I _{T(AV)}	Average on-state current	$T_c = 95^{\circ}C$	22.0	A	
1	Peak non-repetitive surge current	single half cycle; f = 50Hz; T _J (initial) = 25°C	425	A	
I _{TSM} Peak non-repeti	reak non-repetitive surge current	single half cycle; f = 60Hz; T _J (initial) = 25°C	500	A	
l²t	l^2 t Value for fusing $t_p = 8.3 \text{ ms}$		1035	A²s	
di/dt	Critical rate of rise of on-state current	$f = 60Hz$; $T_J = 125^{\circ}C$	150	A/µs	
I _{GM}	Peak gate current	T _J = 125°C	3.5	A	
P _{G(AV)}	Average gate power dissipation	T_ = 125°C	0.8	W	
T _{stg}	Storage temperature range			°C	
T,	Operating junction temperature range		-40 to 125	°C	

Symbol	Test Conditions			Value	Unit
			MAX.	40	_ mA
Τ	$V_{\rm D}$ = 12V; $R_{\rm L}$ = 30 Ω		MIN.	5	
/ GT			MAX.	1.5	V
		400V		450	
	$V_{\rm D} = V_{\rm DRM}$; gate open; $T_{\rm J} = 100^{\circ}C$	600V		425	1
		800V		400	
lv/dt		1000V	MIN.	200	V/µs
		400V		350	
	$V_{\rm D} = V_{\rm DRM}$; gate open; $T_{\rm J} = 125^{\circ}{\rm C}$	600V		325	
		800V		300	
, GD	$V_{\rm D} = V_{\rm DRM}; R_{\rm L} = 3.3 \text{ k}\Omega; T_{\rm J} = 125^{\circ}\text{C}$		MIN.	0.2	V
4	l _T = 400mA (initial)		MAX.	50	mA
1	(1)		MAX.	35	μs
at	$I_{G} = 2 \times I_{GT}$; PW = 15µs; $I_{T} = 70A$		TYP.	2	μs

Notes :

(1) $I_T=2A$; $t_p=50\mu s$; dv/dt=5V/ μs ; di/dt=-30A/ μs

Static Characteristics						
Symbol	Test Conditions				Value	Unit
V _{TM}		$I_{_{T}} = 70A; t_{_{p}} = 380 \mu s$		MAX.	1.8	V
		T = 25°C	400 - 600V		10	μA
		$T_J = 25^{\circ}C$	800 - 1000V	MAX.	20	
		$T_{J} = 100^{\circ}C$	400 - 600V		1000	
I _{drm} / I _{rrm}	V _{DRM} / V _{RRM}		800V		1500	
			1000V		3000	
		T 125%C	400 - 600V		2000	
		T _J = 125°C		1	3000	

Thermal Resistance					
Symbol	Parameter	Value	Unit		
R _{θ(J-C)}	Junction to case (AC)	0.7	°C/W		

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

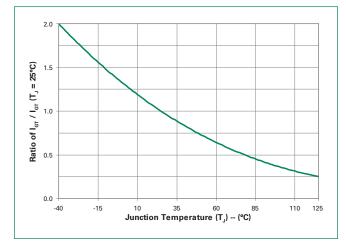
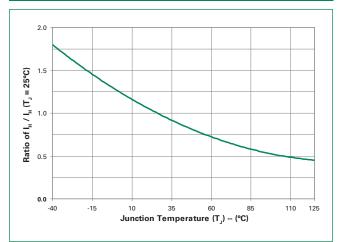



Figure 5: Power Dissipation (Typical)

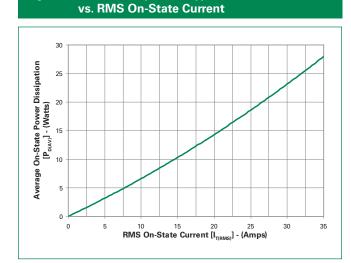
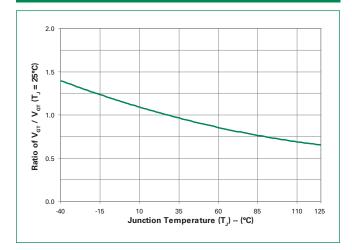



Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

Figure 4: On-State Current vs. On-State Voltage (Typical)

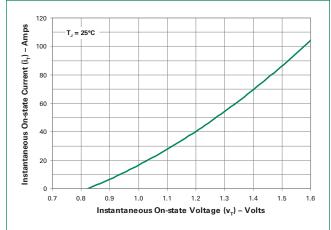
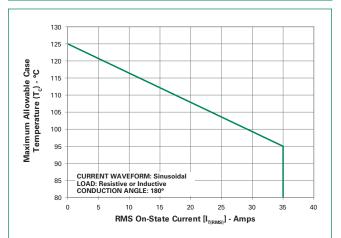



Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

©2010 Littelfuse, Inc Specifications are subject to change without notice. Please refer to http://www.littelfuse.com for current information.

Figure 7: Maximum Allowable Case Temperature vs. Average On-State Current

Figure 8: Peak Capacitor Discharge Current

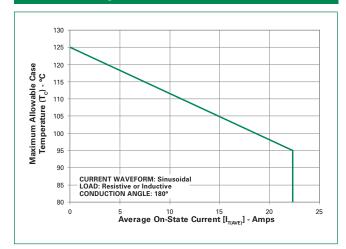
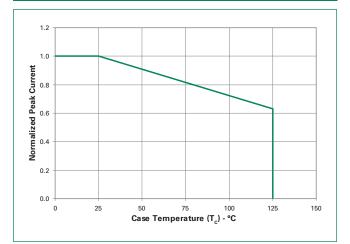
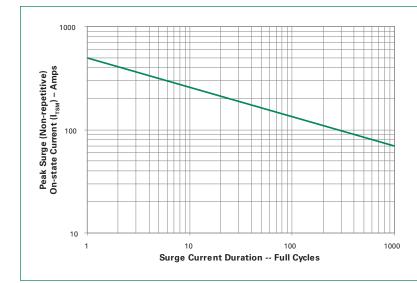
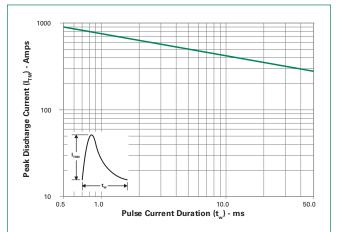





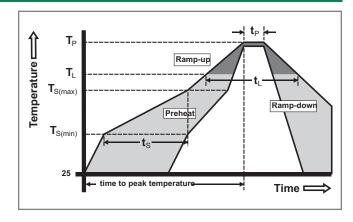
Figure 9: Peak Capacitor Discharge Current Derating

Figure 10: Surge Peak On-State Current vs. Number of Cycles

SUPPLY FREQUENCY: 60 Hz Sinusoidal

LOAD: Resistive

RMS On-State Current: [I_{T(RMS)}]: Maximum Rated Value at Specified Case Temperature


Notes:

- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

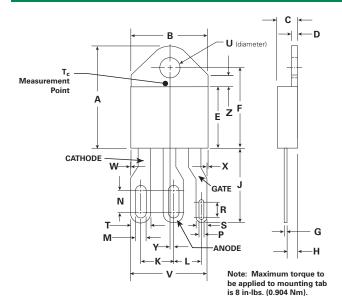
Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (LiquidusTemp) (T_L) to peak		5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
Deflow	-Temperature (T _L) (Liquidus)	217°C	
Reflow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

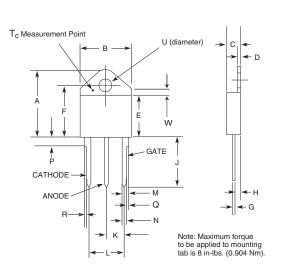
Terminal Finish	100% Matte Tin-plated
Body Material	UL recognized epoxy meeting flammability classification 94V-0
Lead Material	Copper Alloy

Design Considerations


Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwelltime at each temperature; 10 sec (max) transfer time between temperature
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E



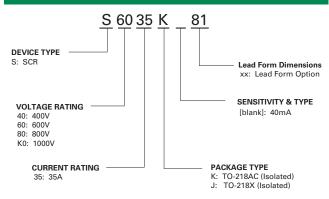
Dimensions – TO- 218X (J Package) — Isolated Mounting Tab

D:	Inc	Millimeters		
Dimension	Min	Max	Min	Max
А	0.810	0.835	20.57	21.21
В	0.610	0.630	15.49	16.00
С	0.178	0.188	4.52	4.78
D	0.055	0.070	1.40	1.78
E	0.487	0.497	12.37	12.62
F	0.635	0.655	16.13	16.64
G	0.022	0.029	0.56	0.74
Н	0.075	0.095	1.91	2.41
J	0.575	0.625	14.61	15.88
K	0.256	0.264	6.50	6.71
L	0.220	0.228	5.58	5.79
M	0.080	0.088	2.03	2.24
N	0.169	0.177	4.29	4.49
Р	0.034	0.042	0.86	1.07
R	0.113	0.121	2.87	3.07
S	0.086	0.096	2.18	2.44
Т	0.156	0.166	3.96	4.22
U	0.164	0.165	4.10	4.20
V	0.603	0.618	15.31	15.70
W	0.000	0.005	0.00	0.13
Х	0.003	0.012	0.07	0.30
Y	0.028	0.032	0.71	0.81
Z	0.085	0.095	2.17	2.42

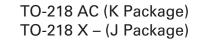
Dimensions – TO- 218AC (K Package) – Isolated Mounting Tab

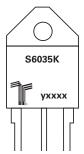
Dimension	Inc	hes	Millim	neters
Dimension	Min	Max	Min	Max
А	0.810	0.835	20.57	21.21
В	0.610	0.630	15.49	16.00
С	0.178	0.188	4.52	4.78
D	0.055	0.070	1.40	1.78
E	0.487	0.497	12.37	12.62
F	0.635	0.655	16.13	16.64
G	0.022	0.029	0.56	0.74
Н	0.075	0.095	1.91	2.41
J	0.575	0.625	14.61	15.88
К	0.211	0.219	5.36	5.56
L	0.422	0.437	10.72	11.10
Μ	0.058	0.068	1.47	1.73
Ν	0.045	0.055	1.14	1.40
Р	0.095	0.115	2.41	2.92
Q	0.008	0.016	0.20	0.41
R	0.008	0.016	0.20	0.41
U	0.164	0.165	4.10	4.20
W	0.085	0.095	2.17	2.42

Expertise Applied | Answers Delivered


Product Selector Voltage Gate Sensitivity Part Number Package Туре 400V 600V 800V 1000V Sxx35K Х Х Х Х 40mA Standard SCR TO-218AC Sxx35J Х Х Х 40mA Standard SCR TO-218X

Note: xx = Voltage


Packing Options					
Part Number	Marking	Weight	Packing Mode	Base Quantity	
Sxx35KTP	Sxx35K	4.40g	Tube	250 (25 per tube)	
Sxx35JTP	Sxx35J	5.23g	Tube	250 (25 per tube)	


Note: xx = Voltage

Part Marking System

