

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

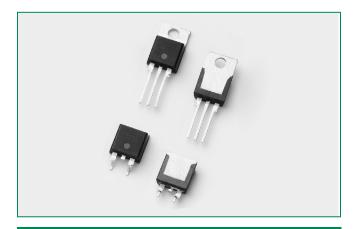
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

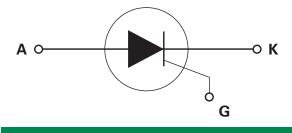
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



S8016xA Series



Main Features

Symbol	Value	Unit
I _{T(RMS)}	16	А
V _{DRM} /V _{RRM}	800	V
l _{GT}	50	mA

Schematic Symbol

Description

The Littelfuse SCR S8016xA series are specifically designed for Electric Vehicle On-Board Charger (EVOBC) applications. This SCR AC line input rectifier can handle Level 1 charging up to 16Arms at 120V, and Level 2 charging up to 16A rms at 240V at 100°C and up to 25A rms for 80°C. Its excellent AC handling capability and surge robustness makes this series an ideal switch for these input rectifiers.

Features & Benefits

- \bullet V $_{\rm DRM}$ 800V, I $_{\rm T}$ 25rms to handle input from 100-250V line AC
- High di/dt of 375/µsec enables handling of 3kA 8/20 surge current operationally
- High V_{DSM}/V_{RSM} of 1300V, high dv/dt of 2000V/ µsec prevents SCR mistriggering during 6kV 1.2/50-8/20 surge event with minimal over voltage protection or snubber circuit
- Available in the compact TO-263 SMT package
- AEC-Q101 Fully Compliant
- Halogen free and RoHS compliant

Applications

Input rectification of AC line input for EVOBC applications.

Absolute Maximum Ratings

Symbol	Parameter	Test Conditions	Value	Unit	
V _{DSM} /V _{RSM}	Peak non-repetitive blocking voltage	Pw=100µs	1300	V	
	RMS on-state current	T _c =100°C	16	А	
T(RMS)	Tilvio on-state current	T _c =80°C	25	A	
	Average on-state current	T _c =100°C	10	A	
I _{T(AV)}	Average on-state current	T _c =80°C	16		
1	Pook pop ropotitivo curao current	single half cycle; f=50Hz; T _J (initial)=25°C	188	A	
I _{TSM}	Peak non-repetitive surge current	single half cycle; f=60Hz; T _J (initial)=25°C	225	А	
l²t	I²t Value for fusing	t _p =8.3 ms	210	A ² s	
I _{PP}	Non-repetitive peak surge current	with Littelfuse MOV V20E420AUTO across line; T_J =125°C, 11.2/50-8/20 combination wave, I_T =1A	2400	А	
di/dt	Critical rate of rise of on-state current	T _J =125°C	375	A/µs	
I _{GM}	Peak gate current	T _J =125°C	3.0	А	
P _{G(AV)}	Average gate power dissipation	T _J =125°C	0.6	W	
T _{stg}	Storage temperature range		-40 to 150	°C	
T _J	Operating junction temperature range		-40 to 125	°C	

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Test Conditions	Value	Unit	
		MIN.	15	mA
I _{GT}	$V_D = 12V$; $R_L = 30\Omega$	MAX.	50	IIIA
V _{GT}		MAX.	1.5	V
	$V_D = V_{DRM}$; gate open; $T_J = 125$ °C	MIN.	2000	V/µs
dv/dt	1.2/50 pulse wave, with 250V AC with Littelfuse MOV V20E420AUTO across	MIN.	5	KV/μs
V _{GD}	$V_D = V_{DRM}$; $R_L = 3.3 \text{ k}\Omega$; $T_J = 125$ °C	MIN.	0.2	V
I _H	I _T =400mA (initial)	MAX.	150	mA
t _q	I_T =0.5A; t_p =50µs; dv/dt=5V/µs; di/dt=-30A/µs	MAX.	35	μs
t _{gt}	$I_{g}=2 \times I_{gT}$; PW=15 μ s; I_{T} =40A	TYP.	2	μs

Static Characteristics

Symbol	Test Conditions			Value	Unit
V _{TM}		$I_{T}=32A; t_{p}=380 \mu s$ MAX.		1.4	V
		T _J =25°C		20	
I _{DRM} / I _{RRM}	@ V _{DRM} / V _{RRM}	T _J =100°C	MAX.	1000	μΑ
		T _J =125°C		2000	

Thermal Resistances

Symbol	Parameter	Value	Unit
R _{e(J-C)}	Junction to case (AC)	1.0	°C/W

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

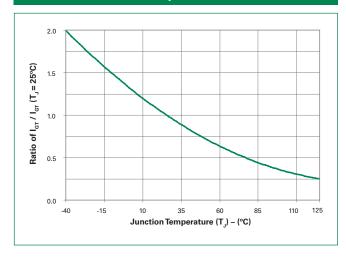


Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

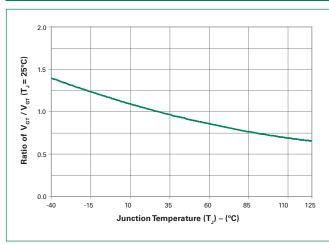


Figure 3: Normalized DC Holding Current vs. Junction Temperature

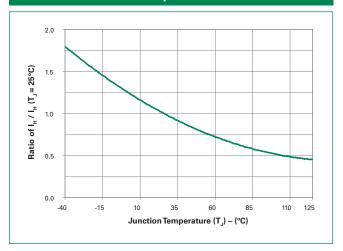


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

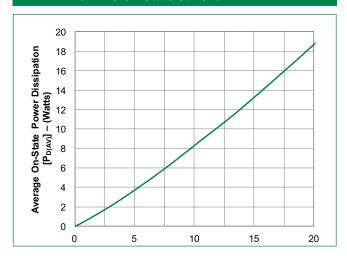


Figure 7: Maximum Allowable Case Temperature vs. Average On-State Current

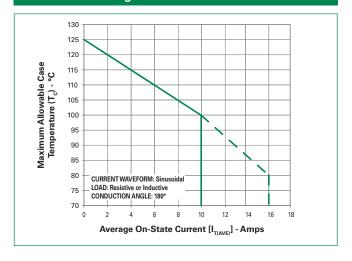


Figure 4: On-State Current vs. On-State Voltage (Typical)

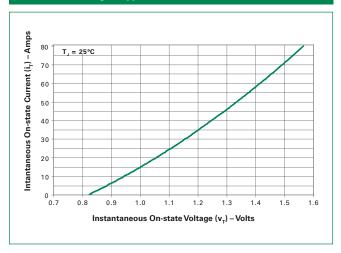
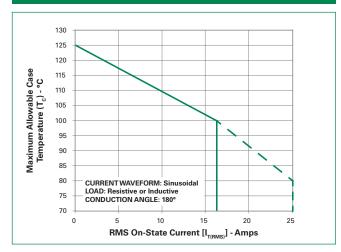
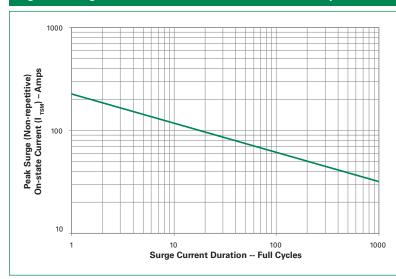
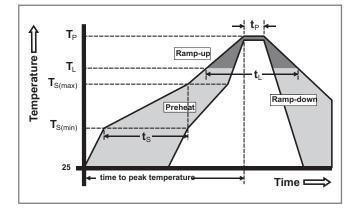




Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

Figure 8: Surge Peak On-State Current vs. Number of Cycles

SUPPLY FREQUENCY: 60 Hz Sinusoidal LOAD: Resistive


RMS On-State Current: [$I_{T(RMS)}$]: Maximum Rated Value at Specified Case Temperature

Notes:

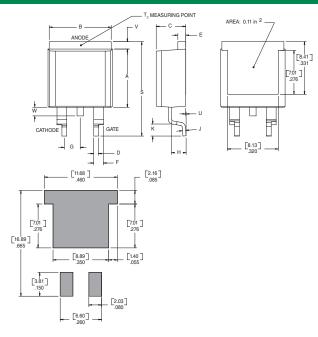
- 1. Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

Soldering Parameters

Reflow Co	ndition	Pb – Free assembly
	-Temperature Min (T _{s(min)})	150°C
Pre Heat	-Temperature Max (T _{s(max)})	200°C
	-Time (min to max) (t _s)	60 – 180 secs
Average ra	amp up rate (LiquidusTemp) k	5°C/second max
$T_{S(max)}$ to T_{L}	- Ramp-up Rate	5°C/second max
Reflow	-Temperature (T _L) (Liquidus)	217°C
nellow	-Time (t _L)	60 – 150 seconds
PeakTemp	erature (T _P)	260 ^{+0/-5} °C
Time with Temperatu	in 5°C of actual peak ure (t _p)	20 – 40 seconds
Ramp-dov	vn Rate	5°C/second max
Time 25°C	to peakTemperature (T _P)	8 minutes Max.
Do not exc	ceed	280°C

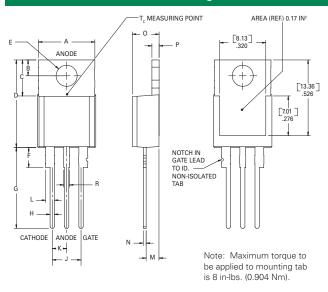
Physical Specifications

Terminal Finish	100% Matte Tin-plated
Body Material	UL Recognized epoxy meeting flammability rating V-0
Lead Material	Copper Alloy


Design Considerations

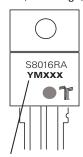
Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

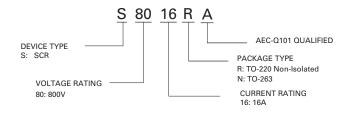

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	JESD22 A-104 Appendix 6 -55°C to 150°C, 15-minute dwell, 1000 cycles
Autoclave (Pressure Cooker Test)	EIA/JEDEC: JESD22-A102 121°C, 100%RH, 15psig, 96hours
Biased Temperature & Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
Intermittent Operational Life	T _A =25°C, ΔTJ ≥ 100°C, 1008hrs
Resistance to Solder Heat	JESD22 A-111: 260°C, 10 seconds
Solderability	ANSI/J-STD-002, category 3, Test A

Dimensions –TO- 263AB (N-package) — D²-Pak Surface Mount

Dimension	Inc	hes	Millin	neters
Dimension	Min	Max	Min	Max
А	0.360	0.370	9.14	9.40
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
Е	0.045	0.060	1.14	1.52
F	0.060	0.075	1.52	1.91
G	0.095	0.105	2.41	2.67
Н	0.092	0.102	2.34	2.59
J	0.018	0.024	0.46	0.61
K	0.090	0.110	2.29	2.79
S	0.590	0.625	14.99	15.88
V	0.035	0.045	0.89	1.14
U	0.002	0.010	0.05	0.25
W	0.040	0.070	1.016	1.78


Dimensions — TO-220AB (R-Package) — Non-Isolated Mounting Tab Common with Center Lead

Dimension	Incl	nes	Millin	neters
Difficusion	Min	Max	Min	Max
А	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
Е	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
Н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
K	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
М	0.085	0.095	2.16	2.41
N	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22

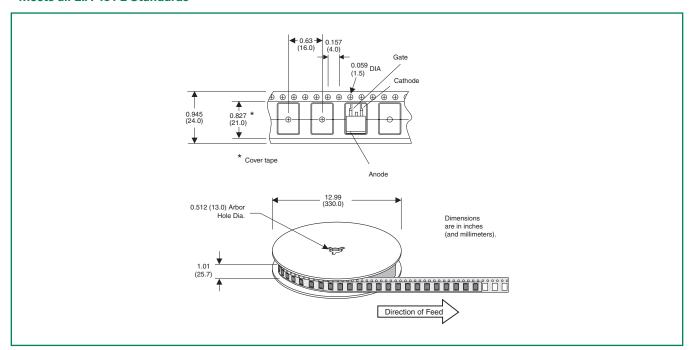

Part Marking System

TO-220 AB - (R Package) TO-263 (N Package)

Date Code Marking Y:Year Code M: Month Code XXX: Lot Trace Code

Part Numbering System

Packing Options


Part Number	Marking	Weight	Packing Mode	Base Quantity	Package
S8016RATP	S8016RA	1.6g	Tube	500 (50 per tube)	TO-220R
S8016NARP	S8016NA	1.6g	Embossed Carrier	500	TO-263

TO-263 Embossed Carrier Reel Pack (RP) Specifications

Meets all EIA-481-2 Standards

