

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Single Low Noise Operational Amplifier

The NE/SA/SE5534/5534A are single high-performance low noise operational amplifiers. Compared to other operational amplifiers, such as TL083, they show better noise performance, improved output drive capability, and considerably higher small-signal and power bandwidths.

This makes the devices especially suitable for application in high quality and professional audio equipment, in instrumentation and control circuits and telephone channel amplifiers. The op amps are internally compensated for gain equal to, or higher than, three. The frequency response can be optimized with an external compensation capacitor for various applications (unity gain amplifier, capacitive load, slew rate, low overshoot, etc.).

Features

• Small-Signal Bandwidth: 10 MHz

• Output Drive Capability: 600 Ω , 10 V_{RMS} at $V_S = \pm 18 \text{ V}$

Input Noise Voltage: 4 nV/√Hz
DC Voltage Gain: 100000

• AC Voltage Gain: 6000 at 10 kHz

Ac voltage Gain. 0000 at 10 kmz

• Power Bandwidth: 200 kHz

• Slew Rate: 13 V/µs

• Large Supply Voltage Range: ± 3.0 to ± 20 V

• Pb-Free Packages are Available

Applications

• Audio Equipment

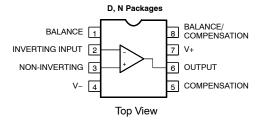
• Instrumentation and Control Circuits

• Telephone Channel Amplifiers

• Medical Equipment

ON Semiconductor®

http://onsemi.com



SOIC-8 D SUFFIX CASE 751

PDIP-8 N SUFFIX CASE 626

PIN CONNECTIONS

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 8 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

1

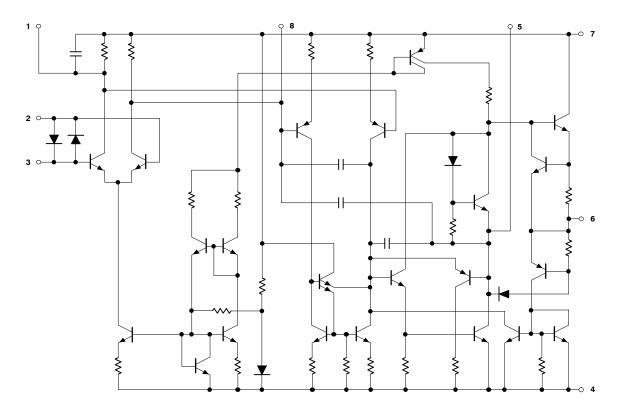


Figure 1. Equivalent Schematic

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Supply Voltage		V _S	±22	V
Input Voltage		V _{IN}	± V Supply	V
Differential Input Voltage (Note 1)		V_{DIFF}	±0.5	V
Operating Temperature Range NE SA SE		T _{amb}	0 to +70 -40 to +85 -55 to +125	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C
Junction Temperature		Tj	150	°C
Power Dissipation at 25°C	N Package D Package	P _D	1150 750	mW
Thermal Resistance, Junction-to-Ambient	N Package D Package	$R_{ hetaJA}$	130 158	°C/W
Output Short-Circuit Duration (Note 2)		-	Indefinite	-
Lead Soldering Temperature (10 sec max)		T _{sld}	230	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Diodes protect the inputs against overvoltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input
- voltage exceeds 0.6 V. Maximum current should be limited to ±10 mA.

 2. Output may be shorted to ground at V_S = ±15 V, T_{amb} = 25°C. Temperature and/or supply voltages must be limited to ensure dissipation rating is not exceeded.

DC ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C; V_S = \pm 15 V, unless otherwise noted.) (Notes 3, 4 and 5)

			NE/SA5534/5534A			SE5534/5534A			
Characteristic	Symbol	Test Conditions	Min	Min Typ Ma		Min Typ		Max Unit	
	Vos		-	0.5	4.0	-	0.5	2.0	mV
Offset Voltage		Overtemperature	-	_	5.0	-	-	3.0	mV
	$\Delta V_{OS}/\Delta T$		-	5.0	_	-	5.0	-	μV/°C
	I _{OS}		-	20	300	-	10	200	nA
Offset Current		Overtemperature	-	_	400	-	-	500	nA
	$\Delta I_{OS}/\Delta T$		-	200	_	_	200	-	pA/°C
	I _B		-	500	1500	-	400	800	nA
Input Current		Overtemperature	-	_	2000	-	-	1500	nA
	$\Delta I_{B}/\Delta T$		-	5.0	_	-	5.0	-	nA/°C
Supply Current Per Op Amp	I _{CC}	Overtemperature	_ _	4.0 -	8.0 10	- -	4.0 -	6.5 9.0	mA
Common Mode Input Range	V _{CM}		±12	±13	-	±12	±13	-	V
Common Mode Rejection Ratio Power Supply Rejection Ratio	CMRR PSRR		70 –	100 10	- 100	80 –	100 10	- 50	dΒ μV/V
Large-Signal Voltage Gain	A _{VOL}	R _L ≥ 600 Ω,	25	100	_	50	100	_	V/mV
		$V_0 = \pm 10 \text{ V}$ Overtemperature	15	_	-	25	_	-	
Output Swing	V _{OUT}	$R_L \ge 600 \Omega$	±12	±13	-	±12	±13	-	V
		Overtemperature $R_L \ge 600 \Omega$; $V_S = \pm 18 V$	±10 ±15	±12 ±16	- -	±10 ±15	±12 16	- -	
		$R_L \ge 2.0 \text{ k}\Omega$ Overtemperature	±13 ±12	±13.5 ±12.5	- -	±13 ±12	± 13.5 ± 12.5	- -	
Input Resistance	R _{IN}		30	100	_	50	100	_	kΩ
Output Short Circuit Current	I _{SC}		-	38	-	-	38	-	mA

^{3.} For NE5534/5534A, T_{MIN} = 0°C, T_{MAX} = 70°C. 4. For SA5534/5534A, T_{MIN} = -40°C, T_{MAX} = +85°C. 5. For SE5534/5534A, T_{MIN} = -55°C, T_{MAX} = +125°C.

AC ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C; V_S = \pm 15 V, unless otherwise noted.)

			NE/SA5534/5534A		SI	E5534/553	4A		
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Output Resistance	R _{OUT}	$\begin{aligned} A_V &= 30 \text{ dB} \\ \text{closed-loop} \\ f &= 10 \text{ kHz}; \\ R_L &= 600 \ \Omega; \\ C_C &= 22 \text{ pF} \end{aligned}$	-	0.3	-	-	0.3	-	Ω
Transient Response		$\label{eq:Voltage-follower} \begin{split} & \text{Voltage-follower,} \\ & \text{V}_{\text{IN}} = 50 \text{ mV} \\ & \text{R}_{\text{L}} = 600 \ \Omega, \\ & \text{C}_{\text{C}} = 22 \text{ pF,} \\ & \text{C}_{\text{L}} = 100 \text{ pF} \end{split}$							
Rise Time	t _R		_	20	_	_	20	_	ns
Overshoot	-		_	20	_	-	20	-	%
Transient Response		$V_{IN} = 50 \text{ mV},$ $R_L = 600 \Omega,$ $C_C = 47 \text{ pF},$ $C_L = 500 \text{ pF}$							
Rise Time	t _R		_	50	_	-	50	_	ns
Overshoot	_		_	35	_	-	35	_	%
Gain	A _V	f = 10 kHz, C _C = 0	-	6.0	-	-	6.0	-	V/mV
		f = 10 kHz, C _C = 22 pF	_	2.2	_	_	2.2	_	
Gain Bandwidth Product	GBW	C _C = 22 pF, C _L = 100 pF	-	10	_	-	10	-	MHz
Slew Rate	SR	C _C = 0	-	13	-	-	13	-	V/μs
		C _C = 22 pF	-	6.0	-	-	6.0	-	
Power Bandwidth	-	$V_{OUT} = \pm 10 \text{ V},$ $C_C = 0 \text{ pF}$	-	200	-	-	200	_	kHz
		$V_{OUT} = \pm 10 \text{ V},$ $C_C = 22 \text{ pF}$	-	95	_	-	95	_	
		$V_{OUT} = \pm 14 \text{ V}, \\ R_L = 600 \ \Omega, \\ C_C = 22 \text{ pF}, \\ V_{CC} = \pm 18 \text{ V}$	-	70	-	-	70	_	

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$; $V_{S} = 15 \text{ V}$, unless otherwise noted.)

			NE/SA/SE5534		NE/SA/SE5534A				
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Input Noise Voltage	V _{NOISE}	f _O = 30 Hz f _O = 1.0 kHz	- -	7.0 4.0	- -	- -	5.5 3.5	7.0 4.5	nV/√Hz
Input Noise Current	I _{NOISE}	f _O = 30 Hz f _O = 1.0 kHz	- -	2.5 0.6	- -	-	1.5 0.4	- -	pA/√Hz
Broadband Noise Figure	-	f = 10 Hz to 20 kHz; R_S = 5.0 kΩ	-	-	-	-	0.9	_	dB
Channel Separation	-	f = 1.0 kHz; R_S = 5.0 kΩ	_	110	-	_	110	-	dB

TYPICAL PERFORMANCE CHARACTERISTICS

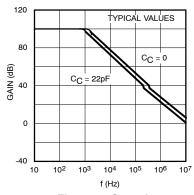


Figure 2. Open-Loop Frequency Response

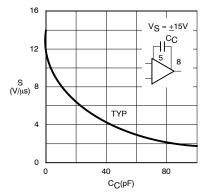


Figure 3. Slew Rate as a Function of Compensation Capacitance

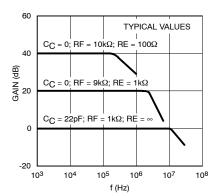


Figure 4. Closed-Loop Frequency Response

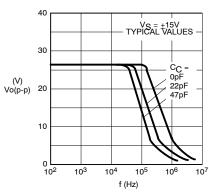


Figure 5. Large-Signal Frequency Response

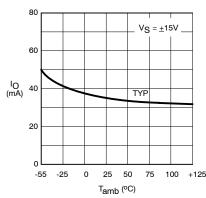


Figure 6. Output Short-Circuit Current

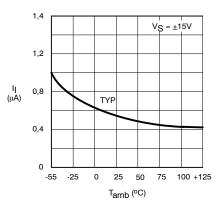


Figure 7. Input Bias Current

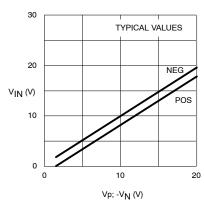


Figure 8. Input Common-Mode Voltage Range

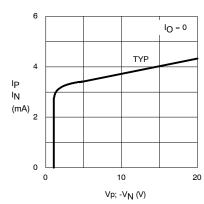


Figure 9. Supply Current Per Op Amp

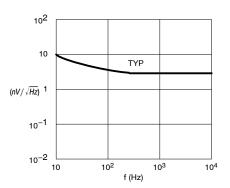


Figure 10. Input Noise Voltage Density

TYPICAL PERFORMANCE CHARACTERISTICS

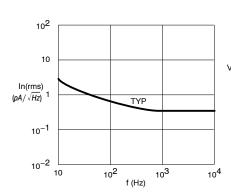


Figure 11. Input Noise Current Density

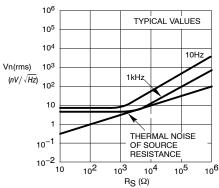


Figure 12. Total Input Noise Density

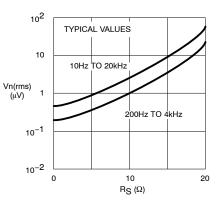


Figure 13. Broadband Input Noise Voltage

TEST LOAD CIRCUITS

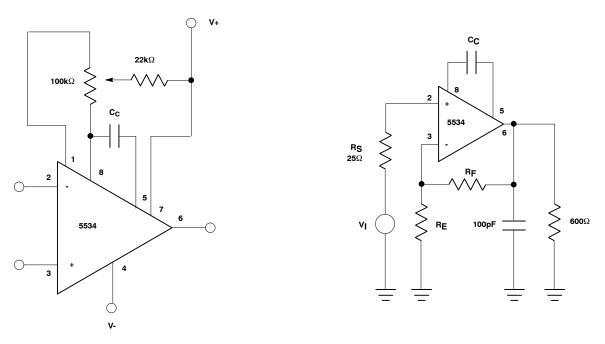


Figure 14. Frequency Compensation and Offset Voltage Adjustment Circuit

Figure 15. Closed-Loop Frequency Response

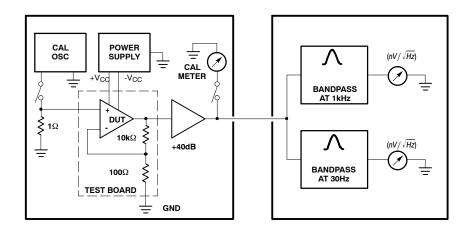


Figure 16. Noise Test Block Diagram

MARKING DIAGRAMS

SOIC-8 D SUFFIX CASE 751

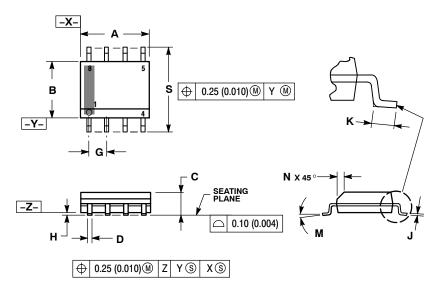
PDIP-8 N SUFFIX CASE 626

x = Blank or A
A = Assembly Location
WL, L = Wafer Lot

YY, Y = Year

WW, W = Work Week

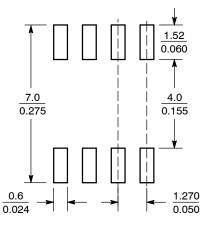
G or ■ = Pb-Free Package


ORDERING INFORMATION

Device	Description	Temperature Range	Shipping [†]
NE5534AD	8-Pin Plastic Small Outline (SO-8) Package	0 to +70°C	98 Units / Rail
NE5534ADG	8-Pin Plastic Small Outline (SO-8) Package (Pb-Free)	0 to +70°C	98 Units / Rail
NE5534ADR2	8-Pin Plastic Small Outline (SO-8) Package	0 to +70°C	2500 / Tape & Reel
NE5534ADR2G	8-Pin Plastic Small Outline (SO-8) Package (Pb-Free)	0 to +70°C	2500 / Tape & Reel
NE5534AN	8-Pin Plastic Dual In-Line Package (PDIP-8)	0 to +70°C	50 Units / Rail
NE5534ANG	8-Pin Plastic Dual In-Line Package (PDIP-8) (Pb-Free)	0 to +70°C	50 Units / Rail
NE5534D	8-Pin Plastic Small Outline (SO-8) Package	0 to +70°C	98 Units / Rail
NE5534DG	8-Pin Plastic Small Outline (SO-8) Package (Pb-Free)	0 to +70°C	98 Units / Rail
NE5534DR2	8-Pin Plastic Small Outline (SO-8) Package	0 to +70°C	2500 / Tape & Reel
NE5534DR2G	8-Pin Plastic Small Outline (SO-8) Package (Pb-Free)	0 to +70°C	2500 / Tape & Reel
NE5534N	8-Pin Plastic Dual In-Line Package (PDIP-8)	0 to +70°C	50 Units / Rail
NE5534NG	8-Pin Plastic Dual In-Line Package (PDIP-8) (Pb-Free)	0 to +70°C	50 Units / Rail
SA5534AD	8-Pin Plastic Small Outline (SO-8) Package	−40 to +85°C	98 Units / Rail
SA5534ADG	8-Pin Plastic Small Outline (SO-8) Package (Pb-Free)	−40 to +85°C	98 Units / Rail
SA5534ADR2	8-Pin Plastic Small Outline (SO-8) Package	−40 to +85°C	2500 / Tape & Reel
SA5534ADR2G	8-Pin Plastic Small Outline (SO-8) Package (Pb-Free)	−40 to +85°C	2500 / Tape & Reel
SA5534AN	8-Pin Plastic Dual In-Line Package (PDIP-8)	−40 to +85°C	50 Units / Rail
SA5534ANG	8-Pin Plastic Dual In-Line Package (PDIP-8) (Pb-Free)	−40 to +85°C	50 Units / Rail
SA5534N	8-Pin Plastic Dual In-Line Package (PDIP-8)	−40 to +85°C	50 Units / Rail
SA5534NG	8-Pin Plastic Dual In-Line Package (PDIP-8) (Pb-Free)	-40 to +85°C	50 Units / Rail
SE5534AN	8-Pin Plastic Dual In-Line Package (PDIP-8)	−55 to +125°C	50 Units / Rail
SE5534ANG	8-Pin Plastic Dual In-Line Package (PDIP-8) (Pb-Free)	−55 to +125°C	50 Units / Rail
SE5534N	8-Pin Plastic Dual In-Line Package (PDIP-8)	−55 to +125°C	50 Units / Rail
SE5534NG	8-Pin Plastic Dual In-Line Package (PDIP-8) (Pb-Free)	−55 to +125°C	50 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

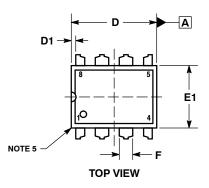
PACKAGE DIMENSIONS


SOIC-8 NB CASE 751-07 **ISSUE AK**

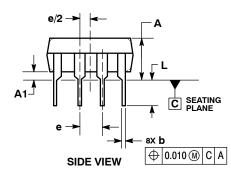
- 1. DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
 DED SIDE
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
 PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.
 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
 STANDARD IS 751-07.

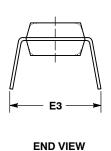
	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Η	0.10	0.25	0.004	0.010	
7	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

SOLDERING FOOTPRINT*



SCALE 6:1


^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


PACKAGE DIMENSIONS

PDIP-8 **N SUFFIX** CASE 626-05 ISSUE M

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. DIMENSION E IS MEASURED WITH THE LEADS RE-STRAINED PARALLEL AT WIDTH E2.
 DIMENSION E1 DOES NOT INCLUDE MOLD FLASH.
- ROUNDED CORNERS OPTIONAL.

		INCHES	;	MILLIMETERS			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α			0.210			5.33	
A1	0.015			0.38			
b	0.014	0.018	0.022	0.35	0.46	0.56	
С	0.008	0.010	0.014	0.20	0.25	0.36	
D	0.355	0.365	0.400	9.02	9.27	10.02	
D1	0.005			0.13			
E	0.300	0.310	0.325	7.62	7.87	8.26	
E1	0.240	0.250	0.280	6.10	6.35	7.11	
E2	0.300 BSC			7.62 BSC			
E3			0.430			10.92	
е	0.100 BSC			2.54 BSC			
L	0.115	0.130	0.150	2.92	3.30	3.81	

ON Semiconductor and unarre registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products reserves the right to make changes without further notice to any products herein. Scilled makes no warranty, representation or guarantee regarding the suitability in is products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your loca Sales Representative