imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1. General description

The SA58646 is a BiCMOS integrated circuit that performs all functions from the antenna to the microcontroller for reception and transmission for both the base station and the handset in a 902 MHz to 928 MHz full-duplex radio. The SA58646 may be used in a UHF push-to-talk walkie-talkie or in a UHF to 900 MHz data transceiver. The SA58646 is a pin-compatible derivative of the UAA3515 with advanced features.

This IC integrates most of the functions required for a half-duplex or full-duplex radio in a single integrated circuit. Additionally, the programmability implemented reduces significantly external components count, board space requirements and external adjustments.

2. Features

- RF RX (single frequency conversion FM receiver):
 - Integrated LNA
 - Image reject mixer
 - FM detector at 10.7 MHz including an IF limiter, a wide band PLL demodulator, an output amplifier and a RSSI output
 - Carrier detection with programmable threshold
 - Programmable data amplifier (slicer) phase
- Synthesizer:
 - Crystal reference oscillator with integrated tuning capacitor
 - Reference frequency divider
 - Narrow band RX PLL including RX VCO with integrated varicaps
 - Narrow band TX PLL including TX VCO with integrated varicaps
 - VCO external inductors can be done with printed transmission lines on the PCB which offers substantial savings
 - Programmable clock divider with output buffer to drive a microcontroller
- Baseband RX section:
 - Programmable RX gain (enable phone volume control)
 - Expander with output noise level control
 - Earpiece amplifier with volume control feature
 - Data amplifier
- Baseband TX section:
 - Microphone amplifier
 - Compressor with automatic level control and hard limiter
 - Programmable TX gain

SA58646 UHF 900 MHz transceiver IC

- Microcontroller interface:
 - 3-wire serial interface
- Other features:
 - Voltage regulator to supply internal PLLs
 - Selectable voltage doubler
 - Programmable low battery detection time multiplexed with RSSI carrier detection

3. Applications

- 902 MHz to 928 MHz full-duplex radio
- UHF to 900 MHz data transceiver
- UHF push-to-talk walkie-talkie

4. Ordering information

Table 1.Ordering information

Type number	Package						
	Name	Description	Version				
SA58646BD	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2				

UHF 900 MHz transceiver IC

5. Block diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
GND(MIX)	1	mixer ground
RFIX	2	LNA input x
RFIY	3	LNA input y
GND(LNA)	4	LNA ground
RXLF	5	RX loop filter output
RXPD	6	RX phase detector output
RSSI	7	RSSI output
VREG	8	internal voltage regulator capacitor connection
GNDDIG	9	digital parts ground
VCP	10	charge pump voltage output
GNDVCP	11	charge pump ground

UHF 900 MHz transceiver IC

Table 2.	Pin description	ncontinued
Symbol	Pin	Description
V _{CC(PS)}	12	prescaler supply
TXPD	13	TX phase detector output
TXLF	14	TX loop filter output
GND(PA)	15	PA ground
PAO	16	PA output
GND(PA)	17	PA ground
MODI	18	summator amplifier input
MODO	19	summator amplifier output
GNDVTX	20	VCO TX ground
VTX	21	VCO TX voltage output
TXLOX	22	VCO TX coil connection x
TXLOY	23	VCO TX coil connection y
V _{CC(ATX)}	24	audio TX supply
CCAP	25	external capacitor connection for compressor
TXO	26	audio TX output
MICI	27	microphone amplifier input
MICO	28	microphone amplifier output
CMPI	29	compressor input
VB	30	voltage reference capacitor connection
GND(ATX)	31	audio TX ground
XTALI	32	crystal input
XTALO	33	crystal output
CDLBD	34	carrier detector or low battery detector output (out-of-lock synthesizer RX and/or TX in Test mode)
CLKO	35	clock output
EN	36	serial interface enable input
CLK	37	serial interface clock input
DATA	38	serial interface data input
DATAO	39	data amplifier output
DATAI	40	data amplifier input
GND(ARX)	41	audio RX ground
EARO	42	earpiece amplifier output
EARI	43	earpiece amplifier input
V _{CC(ARX)}	44	audio RX supply
ECAP	45	external capacitor connection for expander
RXAI	46	audio RX input
LPFD	47	demodulator loop filter
DETO	48	inverting demodulator amplifier output
PLLO	49	demodulator amplifier negative input
LIMI	50	limiter input
GND(IF)	51	IF ground

UHF 900 MHz transceiver IC

Table 2.	Pin descriptio	ncontinued
Symbol	Pin	Description
IFA2O	52	IF second amplifier output
IFA2I	53	IF second amplifier input
V _{CC(IF)}	54	IF supply
IFA1O	55	IF first amplifier output
IFA1I	56	IF first amplifier input
VRX	57	VCO RX voltage output
RXLOX	58	VCO RX coil connection x
RXLOY	59	VCO RX coil connection y
GNDVRX	60	VCO RX ground
V _{CC(BLO)}	61	RX LO buffer supply
V _{CC(MIX)}	62	mixer supply
MIXO	63	mixer output
V _{CC(LNA)}	64	LNA supply

7. Functional description

Refer to Figure 1 "Block diagram of SA58646".

7.1 Power supply and power management

7.1.1 Power supply voltage

This circuit is used in a full-duplex radio handset and base unit. The handset unit is battery powered and can operate on three NiCad cells. The minimum supply voltage of the IC is $V_{CC} = 2.9$ V.

7.1.2 Power-saving operation modes

When the circuit is used in a handset, it is important to reduce the current consumption. There are 3 main modes of operation:

- Active mode (talk): all blocks are powered
- RX mode: all circuitry in the RF receiver part is active
- Inactive mode: all circuitry is powered down except the serial interface. In this latter mode the crystal reference oscillator, output clock buffer, voltage regulator and voltage doubler can be disabled separately.

A low current consumption mode on the crystal oscillator and clock output can be programmed. Latch memory is maintained in all modes. <u>Table 3</u> shows which blocks are powered in each mode.

Circuit block	Mode		
	Active	RX	Inactive
VB reference	Х	Х	-
RX-RF	Х	Х	-
RX PLL	Х	Х	-
RX and TX audio	Х	-	-
TX-RF (and PA if enabled)	Х	-	-

Table 3.Powered blocks

Some blocks can be activated separately: crystal oscillator, voltage regulator (adjustment is always disabled), power amplifier, voltage doubler, hard limiter, automatic level control, output clock buffer and earpiece amplifier. <u>Table 4</u> shows which block can be activated in each mode.

Circuit block	Mode						
	Active	RX	Inactive				
Crystal active ^[1]	Х	Х	X				
Clock output not disabled	Х	Х	Х				
Voltage regulator active ^[2]	Х	Х	Х				
Power amplifier active	Х	-	-				
Doubler enabled ^[3]	Х	Х	Х				
Hard limiter or automatic level control not disabled	Х	-	-				
Earpiece amplifier enabled	Х	Х	_ <u>[4]</u>				

[1] In RX and TX mode, the crystal oscillator is automatically activated. An external frequency can be forced to pins XTALI and XTALO.

[2] In RX and TX mode, the voltage regulator with adjustment is automatically enabled; bit REG can be either logic 1 or logic 0.

- [3] If the voltage doubler is enabled, the crystal oscillator is automatically activated.
- [4] In Inactive mode, the earpiece amplifier is automatically disabled.

7.1.3 Control bits in power saving modes

<u>Table 5</u> shows the control bit values for selection of each mode and the typical current consumption for those modes.

Table 5.Control bit values

$V_{CC} = 3.3 \text{ V}; T_{amb} = 25 \circ C; f_{xtal} = 10.24 \text{ MHz}.$									
Power saving mode	MODE[1:0]	Condition		Typical				
	Bit 1	Bit 0	Voltage doubler	Crystal oscillator	Voltage regulator	Clock output	current consumption		
Active mode	1	1	-	-	-	-	76 mA		
RX mode	1	0	-	-	-	-	58 mA		
Inactive mode	0	Х	inactive	disabled	disabled	disabled	< 10 µA		
				$XTAL_H = 0$			210 μΑ		
				$XTAL_H = 1$			300 μΑ		
			inactive	$XTAL_H = 1$	enabled	disabled	550 μΑ		
			active				690 μA		

When the clock output is activated, an extra power consumption is applied which is proportional to the programmed bit CLKO. If bit XTAL_H = 0, then the crystal loss is less than 50 Ω to ensure reliable start-up.

Table 6. Extra power consumption

Divider ratio	Extra current consumption	
Bits CLK_DIV[2:0]	Bit CLKO = 0	Bit CLKO = 1
XXX (1, 2, 2.5, 4, 128)	520 μΑ	350 μΑ
000 (off)	0 μΑ	0 μΑ

7.2 FM receiver part

The FM receiver has a single frequency conversion architecture. The image reject mixer enables the user to save an RF filter. The side band select feature (bit SBS) enables the user to choose its frequency plan with RX LO in or out of ISM band and have the same IC for both base and handset. An IF channel filtering compromise between price and performance can be achieved using two or three 10.7 MHz external filters. The integrated FM PLL demodulator with limiter enables consistent saving on external components and pins.

The data comparator is an inverting hysteresis comparator. The open-collector output is current limited to control the output signal slew rate. An external band-pass filter is connected between pins DETO and DATAI (AC coupled). The external resistor should be 180 k Ω at maximum V_{CC}. An external capacitor can be added to further reduce the slew rate.

7.3 Transmitter part

The transmitter architecture is of the direct modulation type. The transmit VCO will be frequency modulated by either speech or data (see Figure 4).

Before the VCO, an amplifier sums the modulating signal and the data TX signal. VCO varicaps are integrated. External inductors that are in series with bonding wires and lead frame are needed to obtain the right frequency. The power amplifier is capable of driving 50 Ω . The output level is programmed through the serial bus interface.

7.4 Synthesizer

The crystal local oscillator and reference divider provide the reference frequency for the RX and TX PLLs. The 10-bit programmed divider value for the reference divider is selected based on the crystal frequency, the desired RX and TX reference frequency values. The crystal frequency of 16.348 MHz is chosen to provide to the microcontroller the standard 4.096 MHz frequency when programming the clock divider value to 4. Then the 16.384 MHz crystal frequency is proposed. The clock divider value will be programmed to 1, 2, 2.5, 4 and 128. The clock divider value of 128 is chosen to place the SA58646 in Sleep mode which enables current saving in the microcontroller. The clock output is an emitter follower type.

The 16-bit TX counter is programmed for the desired transmit channel frequency. The 16-bit RX counter is programmed for the desired local oscillator frequency. The counters are built with a 6-bit prescaler (divider value R from 64 to 127) and a 10-bit divider (divider value C from 8 to 1023). The full counter then provides a divider value from 512 to 65535. To calculate the settings of the two counters, the following procedure is used:

C = int (M / 64)

 $\mathsf{R}=\mathsf{M}-\mathsf{C}\times 64$

where M being the division ratio between the VCO frequency and the reference frequency.

Example: RF RX f = 903 MHz, VCO RX f = 892.3 MHz, IF f = 10.7 MHz, VCO TX f = 925.6 MHz and the internal comparison frequency f = 20 kHz ($f_{xtal} = 10.24$ MHz):

REF DIV[9:0] = 512 (10 0000 0000),

For RX: M = $892.3 \times 10^6 / 20 \times 10^3 = 44615$, C = 697 (10 1011 1001), R = 7 (00 0111),

For TX: $M = 925.6 \times 10^6 / 20 \times 10^3 = 46280$, $C = 723 (10 \ 1101 \ 0011)$, $R = 8 (00 \ 1000)$.

VCOs and varicaps are integrated. The total equivalent inductance is comprised of the bonding wires, lead frame of the package and external inductors. External inductors can be done with printed transmission lines on the PCB, which allows substantial savings.

An on-chip selectable voltage doubler is provided to enable a larger tuning range of the VCOs.

The phase detectors have current drive type outputs. Current can be chosen between 400 µA and 800 µA.

SA58646 1

7.5 RX baseband

This section covers the RX audio path from pins RXAI to EARO. The RXAI input signal is AC-coupled. The microcontroller sets the value of the RX gain with 32 linear steps of 0.5 dB. The RX baseband has a mute and an expander with the characteristics shown in Figure 7. The audio level is programmable over a dynamic range of 31 dB by the RX gain control. The expander slope multiplies the RX gain step by 2 to achieve 1 dB steps on the earpiece output. Noise coming from, and within, the RX baseband can be shaped thanks to a 'noise control' programmability. It provides the possibility to attenuate the expander gain at low input level. Figure 7 provides some information about the noise shaper function. The earpiece amplifier is an inverting rail-to-rail operational amplifier. The non-inverting input is connected to the internal VB reference voltage. Software volume control on the earpiece amplifier is done by integrated switched feedback resistances. Volume control tuning range is 14 dB. Hardware volume control is done by externally switching the earpiece feedback resistance.

SA58646 1

7.6 TX baseband

This section covers the TX audio path from pins MICI to TXO. The input signal at pin MICI is AC-coupled. The microphone amplifier output is also AC-coupled.

The microphone amplifier is an inverting operational amplifier whose gain can be set by external resistors. The non-inverting input is connected to the internal VB reference voltage. External resistors are used to set the gain and frequency response.

The TX baseband has a compressor with the characteristic shown in Figure 9. The Automatic Level Control (ALC) provides a 'soft' limit to the output signal swing as the input voltage increases slowly (that is, a sine wave is maintained at the output). A hard limiter clamps the compressor output voltage at 1.26 V (p-p). The ALC and hard limiter can be disabled via the microcontroller interface. The hard limiter is followed by a mute. The TX gain is digitally programmable with 32 steps of 0.5 dB.

7.7 Other features

7.7.1 Voltage regulator

Regulator voltage VREG is the internal supply for the RX and TX PLLs. It is regulated at 2.7 V nominal voltage. Two capacitors with 4.7 μ F and 100 nF values must be connected to pin VREG to filter and stabilize this regulated voltage. The tolerance of the regulated voltage is initially ±8 % but is improved to ±2 % after the internal band gap voltage reference is adjusted via the microcontroller interface. In Inactive mode, the regulator voltage adjustment is automatically disabled.

7.7.2 Low battery detector

The low battery detector measures the supply voltage V_{CC} with a resistor divider and a comparator. One input of the comparator is connected to reference voltage VB and the other is connected to the middle point of the resistor divider. To prevent spurious switching the comparator has a built-in hysteresis. The precision of the detection depends on the divider accuracy, the comparator offset and the accuracy of the reference voltage. The output is multiplexed at pin CDLBD. When the battery voltage level is under the threshold voltage, the CDLBD output is set at LOW level.

7.8 Microcontroller serial interface

The serial interface is used for programming the IC. To program the IC, 19 bits are used: 16 bits for data and 3 bits for register addresses. The serial interface requires 3 pins: DATA, CLK, EN (see Figure 10).

The serial interface pins are supplied by regulator voltage VREG. The ESD protection diodes on these pins are connected to the supply voltage V_{CC} . Digital outputs (CDLBD and DATAO) have open-collector or open-drain; CLKO is an emitter-follower output.

The DATA, CLK and EN pins provide a 3-wire unidirectional serial interface for programming the reference counters, the transmit and receive channel divider counters, and the control functions.

The interface consists of 19-bit shift registers connected to a matrix of registers organized as 7 words of 16 bits (all control registers). The data is entered with the most significant bit first. The leading 16 bits include the data (D15 to D0), while the trailing 3 bits set up the address (AD2 to AD0). The first bit entered is D15, the last bit AD0.

The DATA and CLK pins are used to load data into the shift registers. Data is clocked into the shift registers on negative clock transitions.

A new clock divider ratio is enabled thanks to an extra EN rising edge. Minimum hold time is 50 ns. During that time, no clock cycle is allowed. These extra EN edges can be applied to all the data programmed, but will have no effect on the serial interface programming.

8. Data registers and addresses

D15 is the most significant bit, and is written first. <u>Table 7</u> shows the data latches and addresses which are used to select each of the registers.

Table 7	7. Da	ta registe	ers inclu	ding preset v	alues at	power-	on									
Addr	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
000	SBS	EARP_	/OL[1:0]	EARP		RX	_GAIN[4:0]		SFS	D_PHASE		FM_P	LL_VCO[4:0]	
	0	1	1	0			0 1111			1	0			0 1111		
001			RX_F	PRE[5:0]							RX_M	1DIV[9:0]				
	XX XXXX XXXX XXXX															
010	[1] REF_DIV[9:0]															
			00	0000		XX XXXX XXXX										
011		TX_PRE[5:0] TX_MDIV[9:0]														
			XX	XXXX							XX XX	XX XXXX	κ			
100	TM2	CLKO	TM1	DOUBLER		TX	_GAIN[4:0]		TX_MU	HD_LIM	ALC	XTAL	RX_MU	DEM_FIL	<u>[1]</u>
	0	0	0	0			01111			1	0	0	1	1	0	0
101	REG	MOD	E[1:0]	XTAL_H		CAR_	DET_LE	EV[4:0]		L_	_BAT_DET[2:	0]	BAT_DET	C	LK_DIV[2:0]]
	1	0	0	1			0 0000	000 0000			000		1		100	
110	P	A_OUT[2	:0]	TX_CP	RX_CP	RE	G_ADJ[2:0]	EXP	[1:0]	TM0	<u>[1]</u>		XTAL_TU	JN[3:0]	
		010		0	0		011		0	0	0	0		011	1	

[1] Undefined zone should always be programmed with logic 0.

S

NXP Semiconductors

8.1 Data register 0

Bit	Symbol	Value	Description
15	SBS		Side band select . The image reject mixer can be programmed to either reject the image frequency at the LO upper frequency or at the LO lower frequency. It enables the user to have the RX LO in or out of ISM band and to use the same IC in both handset and base
		0*	frequency LO – IF is rejected
		1	frequency LO + IF is rejected
14 to 13	EARP_VOL[1:0]		Earpiece volume control. Software gain control on th earpiece amplifier is done with integrated switch feedback resistances.
		00	$R_{fbck} = 14 \ k\Omega, \ G_{ctrl} = 0 \ dB$
		01	$R_{fbck} = 24 \ k\Omega, \ G_{ctrl} = 4.7 \ dB$
		10	R_{fbck} = 41 k Ω , G_{ctrl} = 9.3 dB
		11*	$R_{fbck} = 70.2 \ k\Omega, \ G_{ctrl} = 14 \ dB$
12	EARP		Earpiece
		0*	earpiece disable
		1	earpiece enable; can be used in RX mode for specific feature
11 to 7	RX_GAIN[4:0]		RX gain setting
		0 1111*	for values, see Table 9
6	SFS		Second filter select. Depending on the features of the IF filters used, the user might not need to use the second IF filter. IF filters having 4.5 dB insertion loss ar recommended.
		0	second IF filter not selected
		1*	second IF filter selected
5	D_PHASE		Data phase shifter. The SBS bit is used to invert the phase of the data. Depending on the SBS bit value and the protocol chosen, the data can be inverted between the base and handset data transmission. To correct the data polarity, bit D_PHASE is set.
		0*	inverter is bypassed
		1	inverter is used
4 to 0	FM_PLL_VCO[4:0]		PLL center frequency calibration . This programming allows calibration of the center frequency of the VCO within the FM PLL to align the frequency as close as possible to the nominal 10.7 MHz frequency.
		0 1111*	For values, see Table 10

UHF 900 MHz transceiver IC

Table 9.	TX and RX gain									
Select	RX_G	AIN[4:0]	and TX_	GAIN[4:	0]	RX and TX gain	Earpiece output			
	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	(dB)	(dB)			
0	0	0	0	0	0	-7.5	-15.0			
1	0	0	0	0	1	-7.0	-14.0			
2	0	0	0	1	0	-6.5	-13.0			
3	0	0	0	1	1	-6.0	-12.0			
4	0	0	1	0	0	-5.5	-11.0			
5	0	0	1	0	1	-5.0	-10.0			
6	0	0	1	1	0	-4.5	-9.0			
7	0	0	1	1	1	-4.0	-8.0			
8	0	1	0	0	0	-3.5	-7.0			
9	0	1	0	0	1	-3.0	-6.0			
10	0	1	0	1	0	-2.5	-5.0			
11	0	1	0	1	1	-2.0	-4.0			
12	0	1	1	0	0	–1.5	-3.0			
13	0	1	1	0	1	-1.0	-2.0			
14	0	1	1	1	0	-0.5	-1.0			
15	0	1	1	1	1	0	0			
16	1	0	0	0	0	+0.5	+1.0			
17	1	0	0	0	1	+1.0	+2.0			
18	1	0	0	1	0	+1.5	+3.0			
19	1	0	0	1	1	+2.0	+4.0			
20	1	0	1	0	0	+2.5	+5.0			
21	1	0	1	0	1	+3.0	+6.0			
22	1	0	1	1	0	+3.5	+7.0			
23	1	0	1	1	1	+4.0	+8.0			
24	1	1	0	0	0	+4.5	+9.0			
25	1	1	0	0	1	+5.0	+10.0			
26	1	1	0	1	0	+5.5	+11.0			
27	1	1	0	1	1	+6.0	+12.0			
28	1	1	1	0	0	+6.5	+13.0			
29	1	1	1	0	1	+7.0	+14.0			
30	1	1	1	1	0	+7.5	+15.0			
31	1	1	1	1	1	+8.0	+16.0			

The TX and RX audio signal paths each have a programmable gain block. If a TX or RX voltage gain other than the nominal power-up default is desired, it can be programmed via the microcontroller interface. The gain blocks can be used during final test of the radio to electronically adjust for gain tolerances in the radio system. The RX and TX gain have steps of 0.5 dB covering a dynamic range from -7.5 dB to +8 dB. At the earpiece output, the RX gain steps are multiplied by 2 due to the expander slope. The volume control feature for the earpiece amplifier allows for compensation of gain tolerances from -15 dB to +16 dB. Volume control is preferably done on the earpiece amplifier (bits EARP_VOL[1:0]).

SA58646 1

UHF 900 MHz transceiver IC

Select	FM PI		4:01		Center frequency shift (MHz)	
Ocicot	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	0	0	0	0	0	+3.0
1	0	0	0	0	1	+2.8
2	0	0	0	1	0	+2.6
3	0	0	0	1	1	+2.4
4	0	0	1	0	0	+2.2
5	0	0	1	0	1	+2.0
6	0	0	1	1	0	+1.8
7	0	0	1	1	1	+1.6
8	0	1	0	0	0	+1.4
9	0	1	0	0	1	+1.2
10	0	1	0	1	0	+1.0
11	0	1	0	1	1	+0.8
12	0	1	1	0	0	+0.6
13	0	1	1	0	1	+0.4
14	0	1	1	1	0	+0.2
15	0	1	1	1	1	0
16	1	0	0	0	0	-0.2
17	1	0	0	0	1	-0.4
18	1	0	0	1	0	-0.6
19	1	0	0	1	1	-0.8
20	1	0	1	0	0	-1.0
21	1	0	1	0	1	-1.2
22	1	0	1	1	0	-1.4
23	1	0	1	1	1	-1.6
24	1	1	0	0	0	-1.8
25	1	1	0	0	1	-2.0
26	1	1	0	1	0	-2.2
27	1	1	0	1	1	-2.4
28	1	1	1	0	0	-2.6
29	1	1	1	0	1	-2.8
30	1	1	1	1	0	-3.0
31	1	1	1	1	1	-3.2

Table 10. PLL center frequency calibration

This programming allows calibration of the center frequency of the VCO within the FM PLL to align the frequency as close as possible to the nominal 10.7 MHz frequency.

8.2 Data register 1

Table 11. Data register 1 (address 001h) bit description

Legend:	* reset	value.
---------	---------	--------

-			
Bit	Symbol	Value	Description
15 to 10	RX_PRE[5:0]	-	RX prescaler
9 to 0	RX_MDIV[9:0]	-	RX main divider

8.3 Data register 2

 Table 12.
 Data register 2 (address 010h) bit description

Legend: * reset value.

Bit	Symbol	Value	Description
15 to 10	reserved	00 0000*	undefined; must always be set logic 0
9 to 0	REF_DIV[9:0]	-	Reference divider

8.4 Data register 3

Table 13. Data register 3 (address 011h) bit description

Legend: * reset value.

Bit	Symbol	Value	Description
15 to 10	TX_PRE[5:0]	-	TX prescaler
9 to 0	TX_MDIV[9:0]	-	TX main divider

8.5 Data register 4

Table 14. Data register 4 (address 100h) bit description Legend: * reset value. *

Legena.	resel value.					
Bit	Symbol	Value	Description			
15	TM2	0*	Test mode selection. Test mode bits are only used for test in production and application tuning. Those bits have to be set to logic 0 for normal operation. See <u>Table 22</u> .			
14	CLKO	0*	Clock output drive . Depending on the microcontroller clock frequency and clock capacitive load, the output CLKO can be programmed to optimize current consumption. The clock output level is 1.5 V (p-p). Output CLKO is AC-coupled with pin XTALI of the microcontroller. The external resonator from the microcontroller is then removed.			
		0*	10 MHz at 10 pF			
		1	10 MHz at 5 pF (or 5 MHz at 10 pF)			
13	TM1	0*	Test mode selection. Test mode bits are only used for test in production and application tuning. Those bits have to be set to logic 0 for normal operation. See <u>Table 22</u> .			

UHF 900 MHz transceiver IC

Legena.	resel value.		
Bit	Symbol	Value	Description
12 DOUBLER			Voltage doubler. The minimum supply voltage for the IC is 2.9 V which limits the voltage swing on both charge pumps to approximately 2.3 V. Using the voltage doubler or an external high supply voltage on pin VCP, allows the increased voltage range to enhance the tuning range of the VCO varicaps. To save current in Inactive mode, the voltage doubler clock frequency is the same as the CLKO clock (can be programmed to XTAL / 128); in Active mode, the voltage doubler clock is XTALI / 2.
		0*	doubler inactive
		1	doubler active
11 to 7	TX_GAIN[4:0]		TX gain setting
		01 1111*	for values, see Table 9
6	TX_MU		TX channel mute
		0	not muted (normal operation)
		1*	muted
5 HD_L	HD_LIM		Hard limiter
		0*	disable
		1	enable
5	ALC		Automatic level control
		0*	enable (normal operation)
		1	disable
3	XTAL		Crystal oscillator
		0	on
		1*	off
2	RX_MU		RX channel mute
		0	not muted (normal operation)
		1*	muted
1 DI	DEM_FIL		Demodulator filter. An internal programmable filter limits the demodulator bandwidth. The –3 dB cut-off frequency is selected with this bit. The wider bandwidth provides a solution for audio and sub-audio digital applications.
		0*	7 kHz
		1	100 kHz
0	reserved	0*	undefined, must always be set to logic 0

 Table 14.
 Data register 4 (address 100h) bit description ...continued

 l egend: * reset value.

8.6 Data register 5

Bit	Symbol	Value	Description
15	REG		Internal voltage regulator
		0	disable and tied to supply voltage V_{CC} (in Inactive mode)
		1*	enable
14	MODE[1:0]		Active mode selection. See details in <u>Table 4 "Activated</u> blocks".
		00*	Inactive mode
		01	Inactive mode
		10	RX mode
		11	Active mode
13	XTAL_H		Crystal high current. In Inactive mode, the crystal oscillator is a major contributor to the full current consumption.
		0	save current operation yields a full current consumption i Inactive mode at 230 μ A; see details in <u>Section 7.1.3</u> <u>"Control bits in power saving modes"</u>
		1*	crystal oscillator current is increased by 100 μA
11 to 7	CAR_DET_LEV[4:0]		Carrier detection threshold programming . When bit BAT_DET = 0, the carrier detector is enabled and the signal <i>Carrier detection</i> is routed to the output pin CDLBD. If RSSI is above the programmed RSSI level, pin CDLBD = LOW; if not then pin CDLBD = HIGH. The carrier detector gives an indication if a carrier signal is present on the selected channel. The nominal value and tolerance of the carrier detection. If a different carrier detector specification. If a different carrier detection threshold value is desired, it can be programmed through the microcontroller interface. To scale the carrier detection range, connect an external resistor from pin RSSI to ground. The value 1 0011 corresponds to RSSI = 0.86 V (typical DC value).
		0 0000*	For values, see <u>Table 16</u>
6 to 4	L_BAT_DET[2:0]		Low battery detector voltage . When bit BAT_DET = 1, the low battery detector is enabled and the signal <i>BDout</i> is routed to the output pin CDLBD. If the supply voltage i below the programmed level, pin CDLBD = LOW and if not, pin CDLBD = V_{CC} .
		000*	3.5 V
		001	3.4 V
		010	3.3 V
		011	3.2 V
		100	3.1 V
		101	3.0 V
		110*	2.9 V
		444	0.0.1/

SA58646_1

UHF 900 MHz transceiver IC

Logona			
Bit	Symbol	Value	Description
3	3 BAT_DET		Battery detection
		0	disable
		1*	enable
2 to 0	CLK_DIV[2:0]		Clock output divider. The <i>Clockout</i> signal is derived from the crystal oscillator and is used to drive a microcontroller (bit CLKO). The crystal signal is divided down with a programmable divider value. To supply the clock to the microcontroller and save current in the handset, an external low power resonator may be used and with the clock output disable (bits CLK_DIV[2:0] = 000) as well as the crystal oscillator not active (bit XTAL = 1). In Power-saving mode, the divider ratio is programmed down to 128 to reduce the microcontroller power consumption.
		100*	for values, see Table 17

Table 15. Data register 5 (address 101h) bit description ...continued Legend: * reset value.

Table 16. Carrier detection

Select	CAR_I	DET_LE\	/[4:0]			RSSI threshold detection voltage (V)
	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_
0	0	0	0	0	0	0.1
1	0	0	0	0	1	0.14
2	0	0	0	1	0	0.18
3	0	0	0	1	1	0.22
4	0	0	1	0	0	0.26
5	0	0	1	0	1	0.3
6	0	0	1	1	0	0.34
7	0	0	1	1	1	0.38
8	0	1	0	0	0	0.42
9	0	1	0	0	1	0.46
10	0	1	0	1	0	0.5
11	0	1	0	1	1	0.54
12	0	1	1	0	0	0.58
13	0	1	1	0	1	0.62
14	0	1	1	1	0	0.66
15	0	1	1	1	1	0.7
16	1	0	0	0	0	0.74
17	1	0	0	0	1	0.78
18	1	0	0	1	0	0.82
19	1	0	0	1	1	0.86
20	1	0	1	0	0	0.9
21	1	0	1	0	1	0.94
22	1	0	1	1	0	0.98
23	1	0	1	1	1	1.02

UHF 900 MHz transceiver IC

Select C	CAR_DE				Carrier detectioncontinued							
	_	I_LEV[4:0]			RSSI threshold detection voltage (V)						
В	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0							
24 1		1	0	0	0	1.06						
25 1		1	0	0	1	1.1						
26 1		1	0	1	0	1.14						
27 1		1	0	1	1	1.18						
28 1		1	1	0	0	1.22						
29 1		1	1	0	1	1.26						
30 1		1	1	1	0	1.3						
31 1		1	1	1	1	1.34						

Table 17. Clock output divider

Select	CLK_DIV[2:0]		Clock divider ratio
	Bit 2	Bit 1	Bit 0	
1	0	0	0	output disable
2	0	0	1	2
3	0	1	0	2.5
4	0	1	1	4
5	1	0	0	1
6	1	1	1	128

8.7 Data register 6

Table 18. Data register 6 (address 110h) bit description Legend: * reset value. *

Legena.	reser value.		
Bit	Symbol	Value	Description
15 to 13	PA_OUT[2:0]		Power amplifier output level. The power amplifier uses 2 bits to modify the output power. The PA is disabled for value 000. Duplexer matching from 300Ω to 50Ω is implemented with a parallel inductor and series C network. To get the power at the antenna, the duplexer insertion loss should be subtracted. At maximum power, the DC current consumption is increased by 3 mA over the minimum power current consumption.
		010*	The output power for a 50 Ω termination is specified in Table 20.
12 T	TX_CP		TX charge pump current . The performance of the PLL can be improved by increasing charge pump current.
		0*	400 μΑ
		1	800 μΑ
11	RX_CP		RX charge pump current . The performance of the PLL can be improved by increasing charge pump current.
		0*	400 μΑ
		1	800 μΑ

SA58646_1 Product data sheet

NXP Semiconductors

SA58646

UHF 900 MHz transceiver IC

Logena.			
Bit	Symbol	Value	Description
10 to 8	REG_ADJ[2:0]		Voltage regulator adjustment. An internal 1.5 V band gap voltage reference provides the voltage reference for the low battery detector circuits, the VREG regulator voltage, the VB reference voltage and all internal analog references. In Inactive mode, the adjustment is disabled.
		011*	for values, see <u>Table 21</u>
7 to 6	EXP[1:0]		Expander noise level control. Depending on the application noise floor specification, a noise level control can be applied.
		00*	expander disabled
		11	expander maximum value
5	ТМО	0*	Test mode selection. Test mode bits are only used for test in production and application tuning. Those bits have to be set to logic 0 for normal operation. See <u>Table 22</u> .
4	reserved	0*	undefined; must always be set to logic 0
3 to 0	XTAL_TUN[3:0]		Crystal tuning capacitors. An on-chip crystal reference tuning is provided to compensate for frequency spread over process and temperature. The value of the external capacitor on pin XTALI is chosen to be around 3 pF lower than on pin XTALO. Internally, a programmable capacitance is in parallel with pin XTALI. Tuning capacitance values are in the range of 0 pF to 4.5 pF.
		0111*	for values, see Table 19

 Table 18.
 Data register 6 (address 110h) bit description ...continued

 l egend: * reset value.
 *

Table 19. Crystal tuning capacitance

Select	XTAL_TUN[3:0]				Capacitance (pF)
	Bit 3	Bit 2	Bit 1	Bit 0	
0	0	0	0	0	0.2
1	0	0	0	1	0.5
2	0	0	1	0	0.8
3	0	0	1	1	1.1
4	0	1	0	0	1.4
5	0	1	0	1	1.7
6	0	1	1	0	2.0
7	0	1	1	1	2.3
8	1	0	0	0	2.6
9	1	0	0	1	2.9
10	1	0	1	0	3.2
11	1	0	1	1	3.5
12	1	1	0	0	3.8
13	1	1	0	1	4.1
14	1	1	1	0	4.4
15	1	1	1	1	4.7

Table 20.Power amplifier output	
---------------------------------	--

Select	PA_OUT	[2:0]		Power amplifier				
	Bit 2	Bit 1	Bit 0	Output power (dBm)	Second harmonic (dBm)	Third harmonic (dBm)	Fourth harmonic (dBm)	
-	0	Х	Х	PA inactive	-	-	-	
0	1	0	0	1.0	-17	-27	-34	
1	1	0	1	1.9	-19	-29	-34	
2	1	1	0	2.5	-23	-33	-36	
3	1	1	1	3.0	-26	-36	-40	

Table 21. Voltage reference adjust

Select	REG_AD	J[2:0]		Nominal voltage reference
	Bit 2	Bit 1	Bit 0	
0	0	0	0	-7 %
1	0	0	1	-5 %
2	0	1	0	-3 %
3	0	1	1	-1 %
4	1	0	0	+1 %
5	1	0	1	+3 %
6	1	1	0	+5 %
7	1	1	1	+7 %

Table 22. Test mode

TM2	TM1	ТМО	Select
0	0	0	normal operation
0	0	1	up or down RX
0	1	0	up or down TX
0	1	1	up or down RX or TX
1	0	0	reference divider output divided by 2
1	0	1	prescaler and main divider RX divided by 2
1	1	0	prescaler and main divider TX divided by 2
1	1	1	double synthesizers charge pump are in 3-state

Out-of-lock of synthesizers RX or TX can be indirectly monitored on pin CDLBD: the width of the 'glitch' gives a direct measure of the phase error on the PLL RX and/or PLL TX.

To tune the external RX and TX VCO inductors, a defined divider ratio has to be programmed on the dividers, and then the image of the VCO frequency can be read on pin CDLBD.

It can also be used to check the divider ratio: force a frequency on VCO or crystal pins and read the programmed frequency on pin CDLBD.

Before pin CDLBD, there is a divide-by-2, then all frequencies are divided by 2. When charge pumps are in 3-state, the VCOs can be measured in stand-alone.