imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SA616Low-voltage high performance mixer FM IF systemRev. 5 - 24 July 2012Product data sheet

1. General description

The SA616 is a low-voltage high performance monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic Received Signal Strength Indicator (RSSI), voltage regulator and audio and RSSI op amps. The SA616 is available in SSOP20 and HVQFN20 packages.

The SA616 was designed for portable communication applications and will function down to 2.7 V. The RF section is similar to the famous SA615. The audio and RSSI outputs have amplifiers with access to the feedback path. This enables the designer to adjust the output levels or add filtering.

2. Features and benefits

- Low power consumption: 3.5 mA typical at 3 V
- Mixer input to >150 MHz
- Mixer conversion power gain of 17 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (LC oscillator or external oscillator can be used at higher frequencies)
- 102 dB of IF amp/limiter gain
- 2 MHz IF amp/limiter small signal bandwidth
- Temperature compensated logarithmic RSSI with a 80 dB dynamic range
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: 0.31 μV into 50 Ω matching network for 12 dB SINAD (Signal-to-Noise-and-Distortion ratio) for 1 kHz tone with RF at 45 MHz and IF at 455 kHz
- SA616 meets cellular radio specifications
- Audio output internal op amp
- RSSI output internal op amp
- Internal op amps with rail-to-rail outputs
- ESD protection exceeds 2000 V HBM per JESD22-A114 and 1000 V CDM per JESD22-C101
- Latch-up testing is done to JEDEC Standard JESD78 Class II, Level B

3. Applications

- Portable cellular radio FM IF
- Cordless phones
- Wireless systems
- RF level meter

- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Portable high performance communication receiver
- Single conversion VHF receivers

4. Ordering information

Table 1.Ordering information

 $T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$

Type number	Topside	Package		Version SOT266-1			
	mark	Name	Description	Version			
SA616DK/01	SA616DK	SSOP20	plastic shrink small outline package; 20 leads; body width 4.4 mm	SOT266-1			
SA616BS	616B	HVQFN20	plastic thermal enhanced very thin quad flat package; no leads; 20 terminals; body $4\times4\times0.85$ mm	SOT917-1			

5. Block diagram

SA616

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description					
Symbol	Pin		Description		
	SSOP20	HVQFN20			
RF_IN	1	19	RF input		
RF_IN_DECOUPL	2	20	RF input decoupling pin		
OSC_OUT	3	1	oscillator output		
OSC_IN	4	2	oscillator input		
RSSI_OUT	5	3	RSSI output		
V _{CC}	6	4	positive supply voltage		
AUDIO_FEEDBACK	7	5	audio amplifier negative feedback terminal		
AUDIO_OUT	8	6	audio amplifier output		
RSSI_FEEDBACK	9	7	RSSI amplifier negative feedback terminal		
QUADRATURE_IN	10	8	quadrature detector input terminal		
LIMITER_OUT	11	9	limiter amplifier output		
LIMITER_DECOUPL	12	10	limiter amplifier decoupling pin		
LIMITER_DECOUPL	13	11	limiter amplifier decoupling pin		
LIMITER_IN	14	12	limiter amplifier input		
GND	15	13 <mark>11</mark>	ground; negative supply		
IF_AMP_OUT	16	14	IF amplifier output		
IF_AMP_DECOUPL	17	15	IF amplifier decoupling pin		
IF_AMP_IN	18	16	IF amplifier input		
IF_AMP_DECOUPL	19	17	IF amplifier decoupling pin		
MIXER_OUT	20	18	mixer output		
-	-	DAP	exposed die attach paddle		

[1] HVQFN20 package supply ground is connected to both GND pin and exposed center pad. GND pin must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the PCB in the thermal pad region.

7. Functional description

The SA616 is an IF signal processing system suitable for second IF systems with input frequency as high as 150 MHz. The bandwidth of the IF amplifier and limiter is at least 2 MHz with 90 dB of gain. The gain/bandwidth distribution is optimized for 455 kHz, 1.5 k Ω source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.

The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 6.2 dB, conversion gain of 17 dB, and input third-order intercept of –9 dBm. The oscillator will operate in excess of 200 MHz in L/C tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for crystal configurations. Butler oscillators are recommended for crystal configurations up to 150 MHz.

The output impedance of the mixer is a 1.5 k Ω resistor permitting direct connection to a 455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also 1.5 k Ω . With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. The IF amplifier has 43 dB of gain and 5.5 MHz bandwidth. The IF limiter has 60 dB of gain and 4.5 MHz bandwidth.

To achieve optimum linearity of the log signal strength indicator, there must be a 12 dBV insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause 12 dBV insertion loss, a fixed or variable resistor or an L pad for simultaneous loss and impedance matching can be added between the first IF output (IF_AMP_OUT) and the interstage network. The overall gain will then be 90 dB with 2 MHz bandwidth.

The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network. This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.

The demodulated output of the quadrature drives an internal op amp. This op amp can be configured as a unity gain buffer, or for simultaneous gain, filtering, and second-order temperature compensation if needed. It can drive an AC load as low as $5 \text{ k}\Omega$ with a rail-to-rail output.

A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPS or TACS cellular telephone. This signal drives an internal op amp. The op amp is capable of rail-to-rail output. It can be used for gain, filtering, or second-order temperature compensation of the RSSI, if needed.

Remark: $dBV = 20\log V_O/V_I$.

8. Limiting values

Table 3.Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134).					
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-	7	V
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	ambient temperature	operating	-40	+85	°C

9. Thermal characteristics

Table 4.	Thermal characteristics			
Symbol	Parameter	Conditions	Max	Unit
Z _{th(j-a)}	transient thermal impedance from junction to ambient	SA616DK/01 (SSOP20)	117	K/W
		SA616BS (HVQFN20)	40	K/W

10. Static characteristics

Table 5.Static characteristics

 V_{CC} = 3 V; T_{amb} = 25 °C; unless specified otherwise.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{CC}	supply voltage		2.7	-	7.0	V
I _{CC}	supply current		-	3.5	5.0	mA

11. Dynamic characteristics

Table 6. Dynamic characteristics

 $T_{amb} = 25 \, ^{\circ}C$; $V_{CC} = 3 \, V$; unless specified otherwise. RF frequency = 45 MHz + 14.5 dBV RF input step-up. IF frequency = 455 kHz; R17 = 2.4 k Ω and R18 = 3.3 k Ω . RF level = -45 dBm; FM modulation = 1 kHz with ± 8 kHz peak deviation. Audio output with de-emphasis filter and C-message weighted filter. Test circuit Figure 21. The parameters listed below are tested using automatic test equipment to assure consistent electrical characteristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Mixer/oscil	lator section (external LO = 220 m	V RMS value)				
f _i	input frequency		-	150	-	MHz
f _{osc}	oscillator frequency		-	150	-	MHz
NF	noise figure	at 45 MHz	-	6.8	-	dB
IP3 _I	input third-order intercept point	50 Ω source; f1 = 45.0 MHz; f2 = 45.06 MHz; input RF level = -52 dBm	-	-9	-	dB
G _{p(conv)}	conversion power gain	matched 14.5 dBV step-up	11	17	-	dB
		50 Ω source	-	2.5	-	dB
R _{i(RF)}	RF input resistance	single-ended input	-	8	-	kΩ
C _{i(RF)}	RF input capacitance		-	3.0	4.0	pF
R _{o(mix)}	mixer output resistance	MIXER_OUT pin	1.25	1.5	-	kΩ
IF section						
$G_{amp(IF)}$	IF amplifier gain	50 Ω source	-	44	-	dB
G _{lim}	limiter gain	50 Ω source	-	58	-	dB
P _{i(IF)}	IF input power	for -3 dB input limiting sensitivity; R17 = 2.4 k Ω ; R18 = 3.3 k Ω (Figure 21); test at IF_AMP_IN pin	-	-105	-	dBm
α_{AM}	AM rejection	80 % AM 1 kHz	-	40	-	dB
V _{o(aud)}	audio output voltage	gain of two (2 k Ω AC load)	60	120	-	mV
SINAD	signal-to-noise-and-distortion ratio	IF level –110 dBm	-	17	-	dB
THD	total harmonic distortion		-30	-45	-	dB
S/N	signal-to-noise ratio	no modulation for noise	-	62	-	dB
V _{o(RSSI)}	RSSI output voltage	RF; R9 = 2 kΩ				
		RF level = -118 dBm	-	0.3	0.8	V
		RF level = -68 dBm	0.7	1.1	2	V
		RF level = -23 dBm	1.0	1.8	2.5	V
$\alpha_{RSSI(range)}$	RSSI range		-	80	-	dB
$\Delta \alpha_{\text{RSSI}}$	RSSI variation		-	<u>+2</u>	-	dB
Z _{i(IF)}	IF input impedance	IF_AMP_IN pin	1.3	1.5	-	kΩ
Z _{o(IF)}	IF output impedance	IF_AMP_OUT pin	-	0.3	-	kΩ
Z _{i(lim)}	limiter input impedance	LIMITER_IN pin	1.3	1.5	-	kΩ
Z _{o(lim)}	limiter output impedance	LIMITER_OUT pin	-	0.3	-	kΩ
V _{o(RMS)}	RMS output voltage	LIMITER_OUT pin	-	130	-	mV

NXP Semiconductors

Low-voltage high performance mixer FM IF system

SA616

Table 6. Dynamic characteristics ...continued

 $T_{amb} = 25 \text{ °C}$; $V_{CC} = 3 \text{ V}$; unless specified otherwise. RF frequency = 45 MHz + 14.5 dBV RF input step-up. IF frequency = 455 kHz; R17 = $2.4 \text{ k}\Omega$ and R18 = $3.3 \text{ k}\Omega$. RF level = -45 dBm; FM modulation = 1 kHz with $\pm 8 \text{ kHz}$ peak deviation. Audio output with de-emphasis filter and C-message weighted filter. Test circuit Figure 21. The parameters listed below are tested using automatic test equipment to assure consistent electrical characteristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
RF/IF secti	on (internal LO)					
V _{o(aud)RMS}	RMS audio output voltage	$V_{CC} = 3 \text{ V}; \text{ RF level} = -27 \text{ dBm}$	-	120	-	mV
V _{o(RSSI)}	RSSI output voltage	system; V _{CC} = 3 V; RF level = -27 dBm	-	2.2	-	V
SINAD	signal-to-noise-and-distortion ratio	system; RF level = -117 dBm	-	12	-	dB

12. Performance curves

SA616

Low-voltage high performance mixer FM IF system

SA616

Low-voltage high performance mixer FM IF system

Low-voltage high performance mixer FM IF system

13. Application information

All information provided in this document is subject to legal disclaimers

Component	Description
C1	51 pF NPO ceramic
C2	220 pF NPO ceramic
C5, C9, C14, C17, C18, C21, C23, C26	100 nF \pm 10 % monolithic ceramic
C6	30 pF trim cap
C7	1 nF ceramic
C8, C15	10.0 pF NPO ceramic
C10	15 μF tantalum (minimum)
C12	2.2 $\mu F \pm$ 10 % tantalum
C19	390 pF \pm 10 % monolithic ceramic
C27	2.2 μF tantalum
FL1, FL2 ^[1]	ceramic filter Murata CFUKF455KB4X-R0
IFT1	330 μH Toko 836AN-0129Z
L1	0.33 μH Toko A638AN-0158Z
L2	1.2 μH Toko FSLM2520-1R2K
X1	44.545 MHz crystal ICM4712701
R5 ^[2]	not used in application board
R10	8.2 k $\Omega\pm$ 5 % 1/4W carbon composition
R11	10 k $\Omega\pm5$ % 1/4W carbon composition
R17	2.4 k $\Omega\pm$ 5 % 1/4W carbon composition
R18	$3.3 \ \text{k}\Omega \pm 5 \ \% \ \text{1/4W}$ carbon composition
R19	11 k $\Omega \pm 5$ % 1/4W carbon composition

Table 7. SA616DK demo board component list

[1] This is a 30 kHz bandwidth 455 kHz ceramic filter. Al the characterization and testing are done with this wideband filter. A more narrowband 15 kHz bandwidth 455 kHz ceramic filter that may be used as an alternative selection is Murata CFUKG455KE4A-R0.

[2] R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz. Recommended value is 22 k Ω , but should not be below 10 k Ω .

Low-voltage high performance mixer FM IF system

NXP Semiconductors

SA616

Low-voltage high performance mixer FM IF system

Low-voltage high performance mixer FM IF system

Low-voltage high performance mixer FM IF system

SA616

14. Test information

Table 8.	Automatic test of	circuit component list
Compone	nt	Description
C1		100 pF NPO ceramic
C2		390 pF NPO ceramic
C5, C9, C ⁻ C21, C23,	14, C17, C18, C25, C26, C27	100 nF \pm 10 % monolithic ceramic
C6		22 pF NPO ceramic
C7		1 nF ceramic
C8, C15		10 pF NPO ceramic
C10		15 μF tantalum (minimum)
C12		2.2 μF
FL1, FL2 <mark>[1</mark>	1	ceramic filter Murata CFUKF455KB4X-R0
IFT1		455 kHz (Ce = 180 pF) Toko RMC-2A6597H
L1		147 nH to 160 nH Coilcraft UNI-10/142-04J08S
L2		0.8 μH nominal; Toko 292CNS-T1038Z
R9		2 k $\Omega \pm$ 1 % 1/4 W metal film
R10		8.2 k $\Omega \pm$ 1 %
R11, R14		10 k $\Omega \pm 1$ %
R12		$2 \text{ k}\Omega \pm 1 \text{ \%}$
R13		20 k $\Omega \pm 1$ %
R17		2.4 k $\Omega\pm$ 5 % 1/4 W carbon composition
R18		3.3 kΩ
R19		16 kΩ
X1		44.545 MHz crystal ICM4712701

[1] This is a 30 kHz bandwidth 455 kHz ceramic filter. Al the characterization and testing are done with this wideband filter. A more narrowband 15 kHz bandwidth 455 kHz ceramic filter that may be used as an alternative selection is Murata CFUKG455KE4A-R0.

SA616

SA616

15. Package outline

Fig 23. Package outline SOT266-1 (SSOP20)

All information provided in this document is subject to legal disclaimers.

HVQFN20: plastic thermal enhanced very thin quad flat package; no leads; 20 terminals; body 4 x 4 x 0.85 mm

SOT917-1

SA616

Fig 24. Package outline SOT917-1 (HVQFN20)

SA616 Product data sheet

16. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

16.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

16.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

16.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities