imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low voltage high performance mixer FM IF system with high-speed RSSI

Rev. 7 — 16 June 2016

Product data sheet

1. General description

The SA636 is a low-voltage high performance monolithic FM IF system with high-speed RSSI incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic Received Signal Strength Indicator (RSSI), voltage regulator, wideband data output and fast RSSI op amps. The SA636 is available in 20-lead SSOP (Shrink Small Outline Package) and HVQFN20 (quad flat package).

The SA636 was designed for high bandwidth portable communication applications and will function down to 2.7 V. The RF section is similar to the famous SA605. The data output has a minimum bandwidth of 600 kHz. This is designed to demodulate wideband data. The RSSI output is amplified. The RSSI output has access to the feedback pin. This enables the designer to adjust the level of the outputs or add filtering.

SA636 incorporates a power-down mode which powers down the device when POWER_DOWN_CTRL pin is LOW. Power-down logic levels are CMOS and TTL compatible with high input impedance.

2. Features and benefits

- Wideband data output (600 kHz minimum)
- Fast RSSI rise and fall times
- Low power consumption: 6.5 mA typical at 3 V
- Mixer input to >500 MHz
- Mixer conversion power gain of 11 dB at 240 MHz
- Mixer noise figure of 12 dB at 240 MHz
- XTAL oscillator effective to 150 MHz (LC oscillator to 1 GHz local oscillator can be injected)
- 92 dB of IF amp/limiter gain
- 25 MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
- RSSI output internal op amp
- Internal op amps with rail-to-rail outputs
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: 0.54 μV into 50 Ω matching network for 12 dB SINAD (Signal-to-Noise And Distortion ratio) for 1 kHz tone with RF at 240 MHz and IF at 10.7 MHz
- 10.7 MHz filter matching (330 Ω)
- Power-down mode (I_{CC} = 200 μA)

- ESD protection exceeds 2000 V HBM per JESD22-A114 and 1000 V CDM per JESD22-C101
- Latch-up testing is done to JEDEC Standard JESD78 Class II, Level B

3. Applications

- DECT (Digital European Cordless Telephone)
- Digital cordless telephones
- Digital cellular telephones
- Portable high performance communications receivers
- Single conversion VHF/UHF receivers
- FSK and ASK data receivers
- Wireless LANs

4. Ordering information

Table 1.Ordering information

Type number	Topside	Package	Package							
	mark	Name	Description	Version						
SA636BS	636B	HVQFN20	plastic thermal enhanced very thin quad flat package; no leads; 20 terminals; body $4 \times 4 \times 0.85$ mm	SOT917-1						
SA636DK/01	SA636DK	SSOP20	plastic shrink small outline package; 20 leads; body width 4.4 mm	SOT266-1						

SA636

Low voltage high performance mixer FM IF system

5. Block diagram

SA636

SA636

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin		Description		
	SSOP20	HVQFN20	-		
RF_IN	1	19	RF input		
RF_IN_DECOUPL	2	20	RF input decoupling pin		
OSC_OUT	3	1	oscillator output (emitter)		
OSC_IN	4	2	oscillator input (base)		
V _{CC}	5	3	positive supply voltage		
RSSI_FEEDBACK	6	4	RSSI amplifier negative feedback terminal		
RSSI_OUT	7	5	RSSI output		
POWER_DOWN_CTRL	8	6	power-down control; active HIGH		
DATA_OUT	9	7	data output		
QUADRATURE_IN	10	8	quadrature detector input terminal		
LIMITER_OUT	11	9	limiter amplifier output		
LIMITER_DECOUPL	12	10	limiter amplifier decoupling pin		
LIMITER_DECOUPL	13	11	limiter amplifier decoupling pin		
LIMITER_IN	14	12	limiter amplifier input		
GND	15	13[1]	ground; negative supply		
IF_AMP_OUT	16	14	IF amplifier output		
IF_AMP_DECOUPL	17	15	IF amplifier decoupling pin		
IF_AMP_IN	18	16	IF amplifier input		
IF_AMP_DECOUPL	19	17	IF amplifier decoupling pin		
MIXER_OUT	20	18	mixer output		
-	-	DAP	exposed die attach paddle; connect to ground		

[1] For the HVQFN20 package, the exposed die attach paddle must be connected to device ground pin 13 and the PCB ground plane. GND pin must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the printed-circuit board in the thermal pad region.

7. Functional description

The SA636 is an IF signal processing system suitable for second IF or single conversion systems with input frequency as high as 1 GHz. The bandwidth of the IF amplifier is about 40 MHz with 38 dB of gain from a 50 Ω source. The bandwidth of the limiter is about 28 MHz with about 54 dB of gain from a 50 Ω source. However, the gain/bandwidth distribution is optimized for 10.7 MHz, 330 Ω source applications. The overall system is well-suited to battery operation as well as high performance and high-quality products of all types such as cordless and cellular hand-held phones.

The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 14 dB, conversion gain of 11 dB, and input third-order intercept of -16 dBm. The oscillator will operate in excess of 1 GHz in L/C tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for crystal configurations. Butler oscillators are recommended for crystal configurations up to 150 MHz.

The output of the mixer is internally loaded with a 330 Ω resistor permitting direct connection to a 10.7 MHz ceramic filter for narrowband applications. The input resistance of the limiting IF amplifiers is also 330 Ω . With most 10.7 MHz ceramic filters and many crystal filters, no impedance matching network is necessary. For applications requiring wideband IF filtering, such as DECT, external LC filters are used (see Figure 15).

To achieve optimum linearity of the log signal strength indicator, there must be a 6 dBV insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause 6 dBV insertion loss, a fixed or variable resistor can be added between the first IF output (IF_AMP_OUT) and the interstage network.

The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network. This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.

Overall, the IF section has a gain of 90 dB for operation at intermediate frequency at 10.7 MHz. Special care must be given to layout, termination, and interstage loss to avoid instability.

The demodulated output (DATA_OUT) of the quadrature is a voltage output. This output is designed to handle a minimum bandwidth of 600 kHz. This is designed to demodulate wideband data, such as in DECT applications.

A Received Signal Strength Indicator (RSSI) completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPS or TACS cellular telephone, DECT and RCR-28 cordless telephone. This signal drives an internal op amp. The op amp is capable of rail-to-rail output. It can be used for gain, filtering, or second-order temperature compensation of the RSSI, if needed.

Remark: dBV = $20\log V_O/V_I$.

8. Internal circuitry

Table 3.Internal circuitPin numbers shown for SS	ts for ea OP20 pa	ch pin ckage; HVC	QFN20 pins shown in parentheses in 'Pin' column.
Symbol	Pin	DC V	Equivalent circuit
RF_IN RF_IN_DECOUPL	1 (19) 2 (20)	+1.07 V +1.07 V	0.8 кΩ 0.8 кΩ
OSC OUT	3 (1)	+1.57 V	
OSC_IN	4 (2)	+2.32 V	
V _{CC}	5 (3)	+3.00 V	(5) VREF o BANDGAP o 002aac985
RSSI_FEEDBACK	6 (4)	+0.20 V	

SA636

SA636

Symbol	Pin	DC V	Equivalent circuit
RSSI_OUT	7 (5)	+0.20 V	Vcc Vcc T T T T T T T T T T T T T
POWER_DOWN_CTRL	8 (6)	+2.75 V	
DATA_OUT	9 (7)	+1.09 V	Vcc Vcc () () () () () () () () () ()
QUADRATURE_IN	10 (8)	+3.00 V	10 40 kΩ 10 40 μA 002aac991
LIMITER_OUT	11 (9)	+1.35 V	8.8 kΩ 0022aac992

 Table 3.
 Internal circuits for each pin ...continued

 Pin numbers shown for SSOP20 package: HVOEN20 pins shown in parentheses in 'Pin' colu

Low voltage high performance mixer FM IF system

	01 20 pa	chage, me	
Symbol	Pin	DC V	Equivalent circuit
LIMITER_DECOUPL	12 (10)	+1.23 V	_
LIMITER_DECOUPL	13 (11)	+1.23 V	
LIMITER_IN	14 (12)	+1.23 V	14 14 13 13 12 002aac993
GND	15 (13)	0 V	-
IF_AMP_OUT	16 (14)	+1.22 V	140 Ω 140 Ω 16 8.8 KΩ 0022aac994
IF_AMP_DECOUPL	17 (15)	+1.22 V	
IF_AMP_IN	18 (16)	+1.22 V	
IF_AMP_DECOUPL	19 (17)	+1.22 V	18 (18) (18) (18) (18) (17) (
MIXER_OUT	20 (18)	+1.03 V	110 Ω 20 400 μA 002aac996

Table 3. Internal circuits for each pin ...continued

Pin numbers shown for SSOP20 package; HVQFN20 pins shown in parentheses in 'Pin' column.

9. Limiting values

Table 4.Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134).								
Symbol	Parameter	Conditions		Min	Max	Unit		
V _{CC}	supply voltage			0.3	7	V		
V _n	voltage on any other pin			-0.3	$V_{CC} + 0.3$	V		
T _{stg}	storage temperature			-65	+150	°C		
T _{amb}	ambient temperature	operating		-40	+85	°C		

10. Thermal characteristics

Table 5.	Cable 5. Thermal characteristics						
Symbol	Parameter	Conditions	Max	Unit			
Z _{th(j-a)}	transient thermal impedance	SA636DK/01 (SSOP20)	117	K/W			
	from junction to ambient	SA636BS (HVQFN20)	40	K/W			

11. Static characteristics

Table 6. Static characteristics

 $V_{CC} = 3 V$; $T_{amb} = 25 °C$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		2.7	3.0	5.5	V
I _{CC}	supply current	DC current drain; POWER_DOWN_CTRL = HIGH	5.5	6.5	7.5	mA
l _l	input current	POWER_DOWN_CTRL = LOW	-10	-	+10	μ A
		POWER_DOWN_CTRL = HIGH	-10	-	+10	μ A
VI	input voltage	POWER_DOWN_CTRL = LOW	0	-	$0.3 \times V_{CC}$	V
		POWER_DOWN_CTRL = HIGH	$0.7\times V_{CC}$	-	V _{CC}	V
I _{CC(stb)}	standby supply current	POWER_DOWN_CTRL = LOW	-	0.2	0.5	mA
t _{ON}	power-up time	RSSI valid (10 % to 90 %)	-	10	-	μS
t _{OFF}	power-down time	RSSI invalid (90 % to 10 %)	-	5	-	μS

SA636

12. Dynamic characteristics

Table 7. Dynamic characteristics

 $T_{amb} = 25 \text{ °C}; V_{CC} = +3 \text{ V}, unless otherwise stated. RF frequency = 240.05 MHz + 14.5 dBV RF input step-up;$ IF frequency = 10.7 MHz; RF level = -45 dBm; FM modulation = 1 kHz with ±125 kHz peak deviation. Audio output with*C*-message weighted filter and de-emphasis capacitor. Test circuit <u>Figure 19</u>. The parameters listed below are tested usingautomatic test equipment to assure consistent electrical characteristics. The limits do not represent the ultimate performancelimits of the device. Use of an optimized RF layout will improve many of the listed parameters.

		it this improve many of the neter param	1010/01			_
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Mixer/osci	llator section (external LO = 160 mV	/ RMS value)				
f _i	input frequency		-	500	-	MHz
f _{osc}	oscillator frequency	external oscillator (buffer)	-	500	-	MHz
NF	noise figure	at 240 MHz	-	12	-	dB
IP3 _i	input third-order intercept point	matched f1 = 240.05 MHz; f2 = 240.35 MHz	-	-16	-	dBm
G _{p(conv)}	conversion power gain	matched 14.5 dBV step-up	8	11	14	dB
R _{i(RF)}	RF input resistance	single-ended input	-	700	-	Ω
C _{i(RF)}	RF input capacitance		-	3.5	-	pF
R _{o(mix)}	mixer output resistance	MIXER_OUT pin	-	-	-	
IF section						_
G _{amp(IF)}	IF amplifier gain	330 Ω load	-	38	-	dB
G _{lim}	limiter gain	330 Ω load	-	54	-	dB
P _{i(IF)}	IF input power	for –3 dB input limiting sensitivity; test at IF_AMP_IN pin	-	-105	-	dBm
α _{AM}	AM rejection	80 % AM 1 kHz	-	40	-	dB
V _{o(RMS)}	RMS output voltage	R _L = 100 kΩ	120	130	-	mV
B _{3dB}	3 dB bandwidth		600	700	-	kHz
SINAD	signal-to-noise-and-distortion ratio	RF level = -111 dBm	-	16	-	dB
THD	total harmonic distortion		-	-43	-38	dB
S/N	signal-to-noise ratio	no modulation for noise	-	60	-	dB
V _{o(RSSI)}	RSSI output voltage	IF with buffer				
		IF level = -118 dBm	-	0.2	0.5	V
		IF level = -68 dBm	0.3	0.6	1.0	V
		IF level = -10 dBm	0.9	1.3	1.8	V
t _{r(o)}	output rise time	IF RSSI output; 10 kHz pulse; no 10.7 MHz filter; no RSSI bypass capacitor; IF frequency = 10.7 MHz				
		RF level = -56 dBm	-	1.2	-	μs
		RF level = -28 dBm	-	1.1	-	μs
t _{f(o)}	output fall time	IF RSSI output; 10 kHz pulse; no 10.7 MHz filter; no RSSI bypass capacitor; IF frequency = 10.7 MHz				
		RF level = -56 dBm	-	2.0	-	μs
		RF level = -28 dBm	-	7.3	-	μS

SA636

Table 7. Dynamic characteristics ...continued

 $T_{amb} = 25 \text{ °C}; V_{CC} = +3 \text{ V}, unless otherwise stated. RF frequency = 240.05 MHz + 14.5 dBV RF input step-up;$ IF frequency = 10.7 MHz; RF level = -45 dBm; FM modulation = 1 kHz with ±125 kHz peak deviation. Audio output with*C*-message weighted filter and de-emphasis capacitor. Test circuit <u>Figure 19</u>. The parameters listed below are tested usingautomatic test equipment to assure consistent electrical characteristics. The limits do not represent the ultimate performancelimits of the device. Use of an optimized RF layout will improve many of the listed parameters.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$\alpha_{RSSI(range)}$	RSSI range		-	90	-	dB
$\Delta \alpha_{\text{RSSI}}$	RSSI variation		-	±1.5	-	dB
Z _{i(IF)}	IF input impedance		-	330	-	Ω
Z _{o(IF)}	IF output impedance		-	330	-	Ω
Z _{i(lim)}	limiter input impedance		-	330	-	Ω
Z _{o(lim)}	limiter output impedance		-	300	-	Ω
V _{o(RMS)}	RMS output voltage	limiter output level with no load	-	130	-	mV
RF/IF section	on (internal LO)		·			
V _{o(RSSI)}	RSSI output voltage	system; RF level = -10 dBm	-	1.4	-	V
SINAD	signal-to-noise-and-distortion ratio	system; RF level = -106 dBm	-	12	-	dB

13. Performance curves

SA636

Low voltage high performance mixer FM IF system

NXP Semiconductors

Low voltage high performance mixer FM IF system

SA636

14. Application information

Table 8.DECT application circuit electrical characteristicsRF frequency = 110.592 MHz; IF frequency = 9.8 MHz; RF level = -45 dBm; FM modulation = 100 kHz with ±288 kHz peak deviation.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Mixer/osc	illator section (external LO = 160	mV RMS value)				
G _{p(conv)}	conversion power gain		-	13	-	dB
NF	noise figure	at 110 MHz	-	12	-	dB
IP3 _i	input third-order intercept point	matched f1 = 110.592 MHz; f2 = 110.892 MHz	-	–15	-	dBm
R _{i(RF)}	RF input resistance		-	690	-	Ω
C _{i(RF)}	RF input capacitance		-	3.6	-	pF
IF section			İ	Ċ		
G _{amp(IF)}	IF amplifier gain	330 Ω load	-	38	-	dB
G _{lim}	limiter gain	330 Ω load	-	54	-	dB
V _{o(RMS)}	RMS output voltage	$R_L = 3 \ k\Omega$	-	130	-	mV
B _{3dB}	3 dB bandwidth		-	700	-	kHz
RF/IF sect	ion (internal LO)		İ	Ċ		
V _{o(RSSI)}	RSSI output voltage	system; RF level = -10 dBm	-	1.4	-	V
S/N	signal-to-noise ratio	system; RF level = -83 dBm	-	10	-	dB

Low voltage high performance mixer FM IF system

Low voltage high performance mixer FM IF system

SA636

15. Test information

SA636

Low voltage high performance mixer FM IF system

Component	Description
R1	7.5 k Ω resistor; select
R2, R7	6.49 kΩ resistor
R3, R8	347.8 Ω resistor
R4, R6, R9, R11	49.9 Ω resistor
R5, R10	1 kΩ resistor
R12, R14	60.4 Ω resistor
R13	249 Ω resistor
C1, C4	10 nF capacitor
C2	5.6 pF capacitor; select for input match
C3, C10, C11, C14, C16, C17, C20, C22	0.1 μF capacitor
C5	5 pF to 300 pF variable capacitor; Murata TZC3P300A 110R00
C6	100 pF capacitor
C7	15 μF, 20 V capacitor ^[1]
C8	1 μF capacitor
C9	39 pF capacitor; select
C10, C13, C15, C18, C19	1000 pF capacitor
C12	150 pF capacitor; select
C21	2.7 pF capacitor
L2	27 nH inductor ^[1] ; Coilcraft 1008HT-27NT or Garret PM20-RO27; select for input match
L3	39 nH inductor; Coilcraft 1008HQ-39NX; select for input match
L4	5.6 μ H variable, shielded inductor, 5 mm SMD; Toko 613BN-9056Z; select for input match
L5	$1.27~\mu H$ to $2.25~\mu H$ variable shielded inductor; 5 mm SMD; select for mixer output match
FL1, FL2	10.7 MHz filter (Murata SFE10.7MA5-A)
FL3	'C' message weighted filter
FL4	active de-emphasis filter

Table 9. Automatic test circuit component list

[1] This value can be reduced when a battery is the power source.

SA636

16. Package outline

Fig 21. Package outline SOT266-1 (SSOP20)

All information provided in this document is subject to legal disclaimers.

HVQFN20: plastic thermal enhanced very thin quad flat package; no leads; 20 terminals; body 4 x 4 x 0.85 mm

SOT917-1

SA636

Fig 22. Package outline SOT917-1 (HVQFN20)

All information provided in this document is subject to legal disclaimers.

17. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

17.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

17.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

17.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities