imall

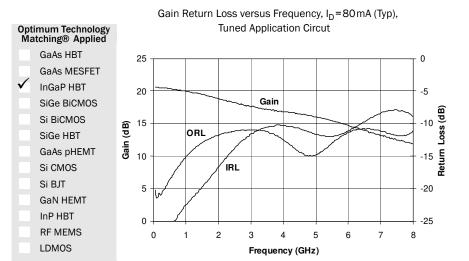
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


DCto8GHz CASCADABLE InGaP/GaAs HBT MMIC AMPLIFIER

Package: SOT-89

Product Description

The SBW-5089(Z) is a high performance InGaP/GaAs HBT MMIC Amplifier. A Darlington circuit fabricated with InGaP process technology provides broadband RF performance up to 8GHz and excellent thermal performance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in high suppression of intermodulation products. Operation requires only a single positive voltage supply, 2 DCblocking capacitors, a bias resistor and an RF choke.

Features

- Available in RoHS Compliant and Pb-Free (Z Part Number)
- 50Ω Cascadable Gain Block
- Wideband Flat Gain to 3GHz: +/-1.4dB
- P_{1dB}= 13.4 at 6GHz
- Input / Output VSWR <2:3to8GHz
- Patented Thermal Design
- Single Voltage Supply Operation

Applications

- Wideband Instrumentation
- Fiber Optic Driver
- OC-48
- Basestation
- SAT COM

Parameter	Specification			Unit	Condition	
Parameter	Min. Typ.		Max.	Unit	Condition	
Small Signal Gain, PC board and connector losses de-embedded	19.3	20.3	21.3	dB	850MHz	
	16.7	17.5	19.0	dB	3000 MHz	
		17.2		dB	4200 MHz	
	14.2	15.0	16.5	dB	6000 MHz	
Output Power at 1dB Compression		20.1		dBm	850MHz	
	18.4	19.4		dBm	1950MHz	
Output Third Order Intercept Point		35.5		dBm	850MHz	
	32.0	34.0		dBm	1950MHz	
Output Power		13.0		dBm	1950 MHz, -45 dBc ACP IS-95 9 Forward Chan- nels (P _{OUT})	
Determined by Return Loss		6000		MHz	>10dB	
Noise Figure		3.9	4.4	dB	1950MHz	
Worst case Input Return Loss	7.0	10.0		dB	DCto 6000 MHz	
Worst case Output Return Loss	8.0	10.0		dB	DCto6000MHz	
Device Operating Voltage	4.5	4.9	5.3	V		
Device Operating Current	72.0	80.0	88.0	mA		
Thermal Resistance		70		°C/W	junction to backside	

Test Conditions: $V_S = 8V$ I_D = 80 mÅ Typ. OIP₃ Tone Spacing = 1 MHz T_L = 25 °C

Bias Resistance=39 Ω P_{OUT} per tone=0dBm Z_S=Z_L=50 Ω

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^{IM}, PowerStar®, POLARIS^{IM} TOTAL RADIO^{IM} and UttimateBlue^{IM} are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners, ©2006, RF Micro Devices, Inc.

rfmd 💓 QOCVO

RFMD + TriQuint = Qorvo

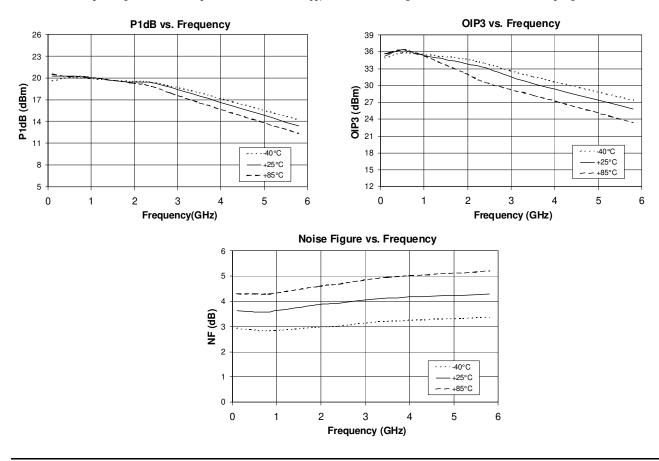
Absolute Maximum Ratings

Parameter	Rating	Unit
Max Device Current (I _D)	130	mA
Max Device Voltage (V _D)	6	V
Max RF Input Power	17	dBm
Max Dissipated Power	0.65	W
Max Junction Temperature (T _J)	150	°C
Operating Temperature Range (T _L)	-40 to + 85	°C
Max Storage Temperature	150	°C
ESD Rating - Human Body Model	10	Class
Moisture Sensitivity Level	MSL 2	

Cauti

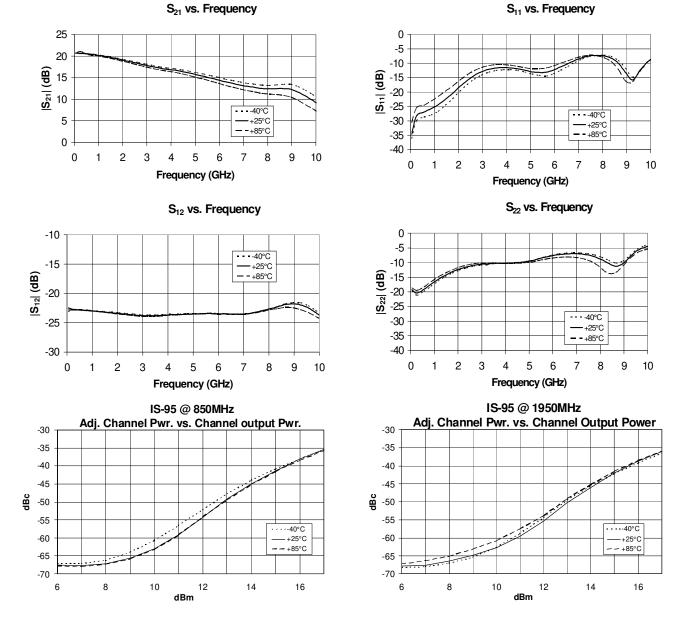
Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.


RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

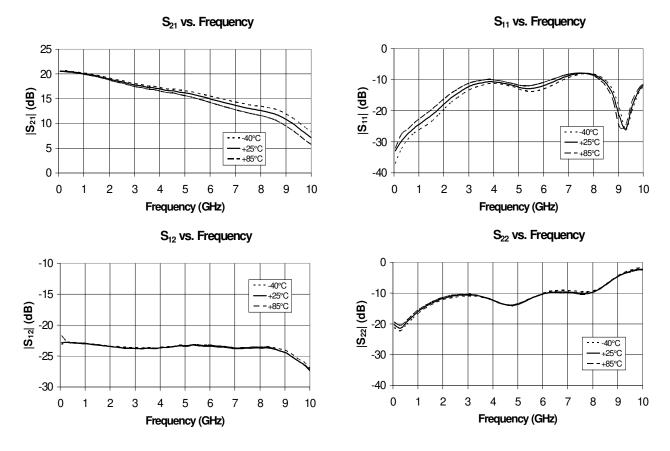
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Typical Performance at Key Operating Frequencies


Parameter	Units	500 MHz	850MHz	1950MHz	2400 MHz	3500 MHz	5800 MHz
Small Signal Gain	dB	20.5	20.3	19.1	18.7	17.3	15.1
Output Third Order Intercept Point	dBm	36.5	35.5	34.0	33.0	30.5	25.5
Output Power at 1dB Compression	dBm	20.2	20.1	19.4	19.4	17.5	13.4
Input Return Loss	dB	26	26	19	15	12	12.5
Output Return Loss	dB	19	17.5	12	11	10.5	10.9
Reverse Isolation	dB	22	23	23	23	23	23
Noise Figure	dB	3.6	3.6	3.9	3.9	4.1	4.3

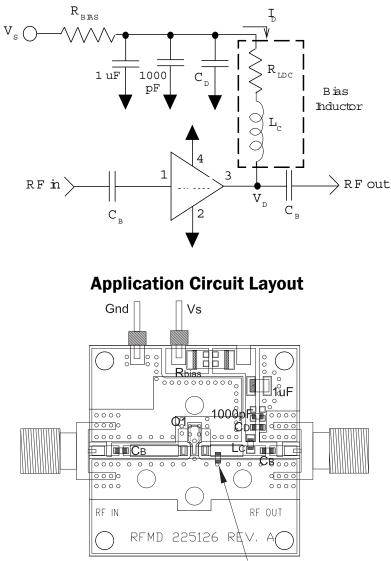
Test Conditions: $V_S=8V$, $I_D=80$ mA Typ, OIP₃ Tone Spacing=1MHz, P_{OUT} per tone=0dBm. $T_L=25$ °C, Bias Resistance=39\Omega, $Z_S=Z_L=50\Omega$.

RF Performance With Basic Application Circuit (Bias: I_D=80mA Typ.)



Note: Full S-Parameter data available at www.RFMD.com

DS150923


Typical RF Performance With Tuned Application Circuit (Bias: I_D =80mA Typ.)

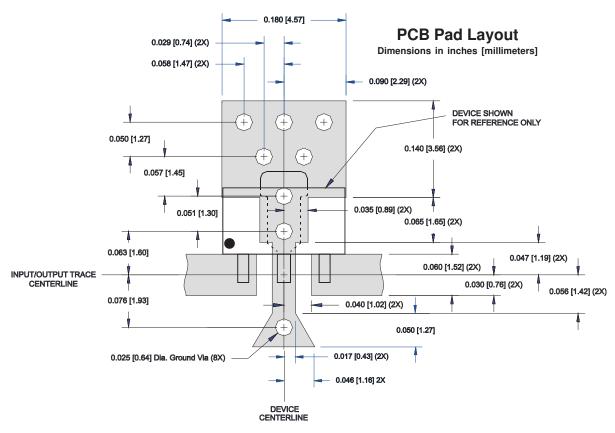
Application Circuit Schematic

Optional 0.1pF cap placment for better 6GHz output return loss

Application Circuit Element Values

Reference Designator	100 MHz	500 MHz	850MHz	1950 MHz	2400 MHz	3500 MHz
C _B	1000 pF	220 pF	100 pF	68 pF	56pF	39 pF
C _D	100 pF	100 pF	68pF	22 pF	22 pF	15 pF
L _C	470nH	68 nH	33 nH	22nH	18nH	15nH

Recommended Bias Resistance for I_D=80mA

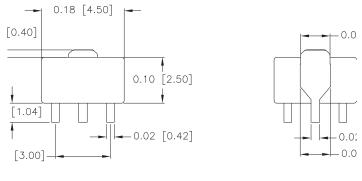

Supply Voltage (V _S) (Volts)	<7	7	7.5	8	9	10	12
Bias Resistance* (Ω)	N/R	26	33	39	52	64	89

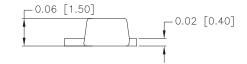
*Bias Resistance=R_{BIAS} + R_{LDC}=(V_S-V_D)/I_D
Select R_{BIAS} so that R_{BIAS} + R_{LDC} ~ the recommended bias resistance. Use 1% or 5% tolerance resistors or parallel combinations to attain the recommended bias resistance ±3%. R_{BIAS} provides current stability over temperature.
*N/R=Not recommended. Contact RFMD technical support for guidance when available supply voltage is <7V.

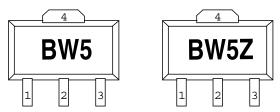
Pin	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external DC-blocking capacitor chosen for the frequency of opera- tion.
2, 4	GND	Connection to ground. Provide via holes as close to the device ground leads as possible to reduce ground induc- tance and achieve RF performance.
3	RF OUT/DC BIAS	RF output and bias pin. This pin requires the use of an external DC-blocking capacitor chosen for the frequency of operation.

Suggested Pad Layout

Notes:


- 1. Solder the copper pad on the backside of the device package to the ground plane.
- 2. Provide a large ground pad area under device pins 1, 2, 4, and 5 with many plated via holes as shown.
- 3. Dimensions given for 50Ω I/O lines are for 31 mil thick Getek. Scale accordingly for different board thicknesses and dielectric contacts.
- 4. We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick Getek with 1 ounce copper on both sides.




Package Drawing

Dimensions in inches (millimeters) Refer to drawing posted at www.rfmd.com for tolerances.

Part Identification Marking

Alternate marking "SBW5089" or "SBW5089Z" on line one with Trace Code on line two.

Ordering Information

Part Number	Description	Reel Size	Devices/Reel	
SBW-5089	Tin-Lead	7"	1000	
SBW-5089Z	Lead Free, RoHS Compliant	7"	1000	