ghipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution
of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business
relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components
to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business
mainly focus on the distribution of electronic components. Line cards we deal with include
Microchip,ALPS,ROHM, Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise
IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,
and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service
and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email & Skype: info@chipsmall.com Web: www.chipsmall.com
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

iy [0

USER GUIDE

?ynapse SNAP Connect E20

SNAP Enabled Gateway
Version 1.1 for

Firmware Versions 1.X and Higher

©2015-2016 Synapse, All Rights Reserved. All Synapse products are patent pending. Synapse, the
Synapse logo, SNAP, and Portal are all registered trademarks of Synapse Wireless, Inc.

Doc# 116-031520-002-G000

6723 Odyssey Drive // Huntsville, AL 35806 // (877) 982-7888 // Synapse-Wireless.com

Disclaimers

Information contained in this Manual is provided in connection with Synapse products and services and is intended solely to assist its customers. Synapse
reserves the right to make changes at any time and without notice. Synapse assumes no liability whatsoever for the contents of this Manual or the
redistribution as permitted by the foregoing Limited License. The terms and conditions governing the sale or use of Synapse products is expressly
contained in the Synapse’s Terms and Condition for the sale of those respective products.

Synapse retains the right to make changes to any product specification at any time without notice or liability to prior users, contributors, or recipients of
redistributed versions of this Manual. Errata should be checked on any product referenced.

Synapse and the Synapse logo are registered trademarks of Synapse. All other trademarks are the property of their owners. For further information on any
Synapse product or service, contact us at:

Synapse Wireless, Inc.
6723 Odyssey Drive
Huntsville, Alabama 35806
256-852-7888
877-982-7888
256-924-7398 (fax)

www.synapse-wireless.com

License governing any code samples presented in this Manual

Redistribution of code and use in source and binary forms, with or without modification, are permitted provided that it retains the copyright notice,
operates only on SNAP® networks, and the paragraphs below in the documentation and/or other materials are provided with the distribution:

Copyright 2008-2016, Synapse Wireless Inc., All rights Reserved.

Neither the name of Synapse nor the names of contributors may be used to endorse or promote products derived from this software without specific prior
written permission.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED.
SYNAPSE AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING
THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SYNAPSE OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR
DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF SYNAPSE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Table of Contents

1.

OVEIVIEW ..uiiiiiiiriniiiiiiiiiiiiiieitiiiiiiiiiteteeessssiiiiiiestettesssssiiiisesteressssssssisssseeesssssssssssssssnns 1
THE LINUX PrOCESSON ...ttt ettt ettt et sttt e st e s bt e e sar e e sareeemeeesareeeabeeesnneesaneeennneas 1
The SNAP-Dased RF MOAUIEcoouuiiiiiiieieeeee ettt s s e s 1
B 0 TSI}]] o 1] USRS 1
THE DBVICE ..ttt et b e st st st e bt e bt e b e s st e e ae e ab e bt e bt e b s he e saeesaneeane e 2
(CT=Y A A1) T=43 - T =T« POt 4
E20 SOftWare SPeCITICS . .cuiireiiieeirieererteniereeneeeenrerenseeresseeeesseeraseessssesenssessssesssssessassessnne 7

PaSSWOIdS aNd OOt ACCESSeeeiurierieiieitie ettt e stee st sie e e st e e sbeeesabeesbeeesmteesbeeesnseesaseesnenesaneanas 7

E20-Specific SOftWare Packagesccovciiieiiciiie ettt e et e e e 7
[P0 0 o NV Lot W 1) 0= = 1o - PR 9
E20 LEDS ... ettt ettt ettt e e e e ettt e e e e e e et b et et e e e e e e abatteee e e e e e nbaateeeeeeeeannrrnaeeeeeeanaann 9
E20 BUTEONS ..ttt e 9
Working With the SIMI220c..ccieuiiiiiiiiieniereeiereeerteeeereneereaseeessscssnsesssssesssssessnsessanne 10
WaKing the SIM220.......coociiiie ettt e s e e e e e et e e s e bt e e e esabeee e e sbaeesesabeeeeennseneeennsens 10
RESETHNG The SIMI220 ...t e e e e e et e e e e ate e e e s bte e e e eaateeeesanteeeesanteeaennnens 10
Restoring Functionality to an Unresponsive SIM220.........cceeeiieiciiiiiiieee e cciiireeee e e e eecvrneeeeeeeeesnnns 11
Upgrading the SM220 FirMWarE......ccuieeeiciiee e ccieee e eiee e e eitee e e eite e e e eiatee e e sateeeessaaeeesnaeeeesnseeeaennnens 12
The SM220-CoNtrolled LEDooiiiiiiieeiie ettt sttt sttt e s e e b e e smee e saneeenes 12
Controlling the E20 Processor from the SM220ccocciiiiiiiiiie et e e 13
AccessSing the IMICrOSD SIOt.......civeuiiieeirtenierenniereenerteeerreneereaneeresscsensesssssesssssessnssssenne 14
UsiNg the Cell MOOEMcveuiiieiiiieiciteietenertenereeneetensereeseersaseesassesenseessssessassessnsesses 15
Activating the Telit Modem on the Verizon Network.........ccooeiieiccieeiccee e 15

Y=L (U1 T P PSP PP PP PP PP PPPPUPPPPPPPPPPN 15

MOAEM ACTIVATION ..ttt et e s sme e s b e s be e e sareesneeesaneas 15

Final Steps — Verifying the Modem was Successfully Added to the Network..........cccccuueeee.e. 16
Troubleshooting Cellular CONNECHIVILY......cc..uuiiiiiee e e e e e 16
CommonN LiNUX OPEratioNnscccciveiireniiinniiieeiiiieeiiimseiiimeiiimeirsiessrsesssrsssssasssnes 18
EItiNG LINUX FIlES.ceii ittt et e e et e e s e tte e e e e ate e e e s bae e e e easteeeeeanteeeesnsteeaennnens 18
Making Your Software RUN at STartupoooeeiiiiiee ettt et rre e e e e e 18

Running a Script to COMPIETIONoviiiiiiie et e e st e e e st e e e snaaeeeeans 18

STArtiNg @ SEIVICE e, 19
SettiNg YOUF E20°S ClOCK....iiiiiuiiiiiiiiiie e ettt ettt erte e st e e et e e e esaab e e e sentte e e s neaaeeesnssaeesannsaeean 19

Resetting @ LOSt USEr PassSWOIduuiiiiiiiiiiiiiieeee ettt ettt e e e e e e ssvraee e e e e s e e snnraeeeasaeeenannes 20

10.

11.

12.

13.

Typical Steps for CoONfIGUIING Wi-Fi.......cooiiiiiiei ettt e e s rtr e e s eraa e e s seaeaeeeeanes 20

0T o] g YA e o U PRPRN 20

Connecting to an ACCESS POINTcciiiiiiiiiiiiiiiiiiieeeeeeee e e e e e e e e e e e e e e eeeeseeeeeeseeseeees 20

Setting Up Access-Point (AP) MOdE........ooo ittt ettt e e e e e eara e e e 21
MoUNtING aN EXEEINAI DIIVE ..eeiiieiiiee ettt et e e et e s s eate e e e satae e s sntaeeesntaeeesanes 22
Extending the E20 With USB ACCESSONIES ..c..creerereerereennereenerenneeeensereesserensesesssesssssesens 23
YT o] o1 AV g T o YT S 23
Connecting to an Additional SNAP DeVICEuuiiiiiiiieecitee ettt e e e e e e sbae e e 23
USING USD_ MOAESWILCNviiiieii e e e e e e e et e e e e e e e e nrraaeeeeeeeeas 23
Factory Restore / Re-FIashing YOUr E20........ccceeveiiiiiiieiiiiieinisiesssesssssssesssssesssesssssssenens 25
Restoring from @ IMICrOSD Cardccuieeieciiiec ettt et e e e s eate e e e satae e s sntaeeesntaaeesanes 25
Restoring from @ USB FIQSh DIIVEuiiii ettt ettt e e ete e e eatae e e eara e e e enreeaeeanes 26
Specifications and Installationccccivveeiiiiiiieiiiiiiinnii s 27
Yo 1Tol 1 [or= Y o o -3 USRS 27
POWEIING the E20 ...cii i iiiiieeee ettt ettt e e e e e e e ettt e e e e e e e e eenbbaeeeeaeeeeaastsaaeeeaeeesannsrreneaeaenannn 28
MOUNTING the E20 ..eiiiiiee ettt et e e et e e s rata e e e seata e e e santaeeesantaeeesantaeeesansaeeesnnseeessnnes 29

Mounting Flat Against the DIN Railueeeiiiiiiiiee e 29

Mounting Perpendicular to the DIN Railccueeiiiiiiiiiiiiie e 29
E20 DiMENSIONS. . eetieiiiiieee ettt et e e e s st e e e s eme e e e s st e e e s seme et e s samre e e e smreeeesamneeeesanneeeesanee 31
Troubleshooting Common Problems.........ccccceiiiiieiiiiiiiniiiiinniini. 32
The Ethernet does not work or ethO does not appear in ifconfigccoeecveeiiicieeiiccieec e 32
SNAP CONNECE IS NOT WOTKING.....uviiieeieieiiiiiiiie e e ettt e e e e e eeirree e e e e e e s teree e e e e e e esannraaeeeeeeeeesnnnranaeens 32
I CaNNOt SSH INTO MY E20 ..ciiiiiiiiiiiiiiiiiiiiiiiiieiereieeeeeeeeeee e e ee e eeeeeseeeseseeesesesssesesssesesssssesssesesesesnes 32
The E20 is slow to boot because it’s waiting for the Network...........cccceeeeeciieieciiie e 32

Regulatory Information and Certificationsccccccoiveeiiiiiieiiiiiininiiiniinn. 34

1. Overview

Thanks for buying a Synapse Wireless E20 gateway device! This small-package computer bridges the gap
between your SNAP-powered mesh network of sensors and controllers, and the rest of the world, through the
Internet.

The SNAP Connect E20 combines a Synapse SM220 RF module and an embedded Linux-
based computer to provide connectivity (Ethernet, cellular, Wi-Fi, serial) and site-
aggregation capabilities to a diverse array of SNAP-powered loT networks across
industrial temperature ranges.

TCP/IP connections can even bridge remote devices running SNAP into one common
network, an effective method for centralizing data storage, performing web-based
analytics, and monitoring remote applications.

Powered by Freescale’s i.MX6 processor, the E20 has ample computing power, reliable
connectivity options, and a sturdy design that makes it the ideal network gateway for
large-scale loT deployments.

The E20 gateway pairs this i.MX6 with an SM220 RF module, a microprocessor with a 2.4
GHz data radio that allows the gateway to communicate with your entire SNAP-based
network, expanding your command-and-control structure to extend beyond your
installation site to anywhere in the world. The gateway not only extends your connectivity range (using cellular
or TCP/IP connections), but provides a platform for data aggregation and for even more specialized control of
nodes in its network.

The Linux Processor

An E20 gateway ships with Ubuntu 14.04, running a custom 3.10.17 Linux kernel based on the Freescale kernel.
With 4 GB of flash space and 512 MB of RAM, the processor has enough power to establish complex control and
communication environments for collecting data from your network, making decisions about how to respond,
and forwarding data anywhere you want it.

Local USB 2.0 connectivity offers nearly unlimited possibilities for on-premises data warehousing. Integrated
wired or wireless TCP/IP options and cellular connectivity permit the gateway to connect to any server you wish
— or to be connected to as a remote server, either for configuring your network or for having a single gateway
operate as a centralized data repository for a broader SNAP-powered network.

The SNAP-based RF Module

The SM220 module in the E20 gateway provides 2.4 MHz 802.15.4-based radio communications on the SNAP-
powered network. The module’s ATmegal28RFA1 microprocessor provides enough computing power to
intelligently handle the communication tasks for commanding your remote network nodes and for receiving
their sensory feedback.

The Symbiosis

This radio communication is the heart of the SNAP-based mesh network. The E20, combining both the radio
module and the power of the Linux computer, is the gateway between your remote nodes and the Internet (or
network of your choice), controlling your devices from wherever you are and delivering your data from
wherever it is generated to wherever you want it to be.

SNAP Connect E20 n

The software that makes this possible on the E20 gateway is SNAP Connect, a Python package you install and
import into your own programs to provide complete control of your SNAP network. SNAP Connect speaks the
language of your SNAP-powered nodes, sending and receiving messages and processing incoming and outgoing
data to meet your needs. SNAP Connect makes it all work together, seamlessly.

The Device

Depending on configuration, the E20 will have one to three antennas, and connectors as shown below:

. SNAP Antenna

NOTE: Buttons are user programmable.
By default, they are not configured.

Button 1

Wi-Fi Antenna

Cell Antenna

Button 2

Button 3

Ethernet Port

Green = Conne_f:ted LEDS

Configured
for 100MBs

USB Type A

micro-USB Power

All E20s include a SNAP-powered module, and thus will come with an antenna for the connection labeled SNAP
on the E20. Your E20 configuration may also include Wi-Fi and/or cellular connectivity options, and if so it will
come with antennas appropriate for those communications. For hardware not included in your E20, there will
not be an RP-SMA jack for an external antenna.

E SNAP Connect E20

If your E20 needs more than one antenna, you can determine which antenna should go on which RP-SMA
connector on the E20 based on the number of dots under the label on the E20 (one for SNAP, two for WIFI,
three for CELL) matching the number of dots marked on the included antenna.

SNAP Connect E20

2. Getting Started

Adding an E20 gateway device to your SNAP network is easy, but as with adding any computer to any network, if
you don’t follow the right steps, you’ll end up in the wrong place. These directions provide the steps for
connecting to your E20 from either a Windows PC or a Linux PC, which we will refer to as your host PC. They
assume that you have some familiarity with your host operating system. See your OS help files if you need
assistance installing software or navigating applications.

1.

Ensure that you have terminal emulation software installed on your host PC. Popular software for this
purpose includes Tera Term, PuTTY, minicom, screen, or any of many others.

Connect the micro-USB port on your E20 to an open USB port on your host PC using a standard USB to
micro-USB cable, such as might be used for charging a cell phone. This will provide the serial terminal
connection needed to configure your E20.

Apply power to the E20.

The device requires DC power from 11 to 26 volts, and you can use either the barrel connector on the
“left” side, or the terminal-block connector on the “bottom” side. (See Powering the E20 below for

power supply options.)
Find the serial port that your host PC has assigned to the E20 (over that USB connection)
a. Windows:
i. Check under “Ports” in the Device Manager.
ii. Look for “Silicon Labs CP210x USB to UART Bridge (COMxx)” where the xx will indicate
the serial port assigned (e.g., COM3, or COM88).

B

: =
a-l ? Ports (COM & LPT)
- T3 RIM Virtual Serial Port v2 (COM25)

iii. Connect using your preferred terminal application. Example screenshots of connecting
via PUTTY and TeraTerm are provided below:

#2 PUTTY Configuration @
Category:
= Sgssion Basic options for your PuTTY session
Logging
B - Terminal Serial o
" i Keyboard erial line pee
- Bl Comas 115200
Features Connection type:
dow JRaw () Telnet () Rlogin () SSH @) Serial
;;ppearance Load, save or delete a stored session
- Behaviour
.. Translation Saved Sessions
- Selection
H Colours Default Settings - Load
- Connection
roxy
Rlogin -
- 55H
- Serial Close window on esdt:
) Always) Mever @) Only on clean exit
About Open] I Cancel

SNAP Connect E20

b. Linux:
i

“Tl Tera Term - [disconnected] VT = || B ER
File Edit Se

Tera Term: Mew connection

TCPAP myhost.example.com

Telnet 22

SSH SSH2

Other
UNSPEC

@ Serial Port: |COMBB: Silicon Labs CP210x USB to ~

| 0K | | Cancel ‘ | Help |

Before plugging in the E20’s USB cable, check for ttyUSB connections in the /dev
directory.
Plug in the E20 and look for a new ttyUSBx, where x indicates the USB connection
assigned (e.g., ttyUSBO).
synapsef@synapse - $
synapse@synapse - 5 ls /dev/ttyUSB*
/dev/ttyUsSB@
@synapse -
synapse@synapse -~ %
If you had any other USB-serial devices plugged in, you may see more than just
/dev/ttyUSBO, which is why you should check for the presence of these devices first.
You can use any of a number of serial terminal programs to connect to your serial port.
Linux versions of PuTTy and TeraTerm exist and work the same way shown in the
Windows examples above (other than the name of the port to which you are
connecting. additionally, utilities such as cu or screen are available as well:
1. Withcu:
To connect: sudo cu -1 /dev/ttyUSBO -s 115200
To disconnect, at the command line type ~. (tilde, period) and then press Enter.
2. With screen:
To connect: sudo screen /dev/ttyUSBO 115200
To disconnect, press ctri-a, and then \ (backslash).

If you find that your host PC cannot connect to the E20 over the USB connection, you may need to install
the Silicon Labs CP210x USB to UART VCP drivers, available from http://www.silabs.com

5. Using your terminal emulator, connect to the E20 using the following serial port settings:
a. 115200 baud

b. 8 bits
c. No parity
d. 1 stop bit

e. No flow control

6. Use your terminal emulation window to log in to the E20 gateway.
a. Username: snap
b. Password: synapse

SNAP Connect E20

NOTE: You must change your password the first time you log in. This prevents you from installing an E20
gateway with the default password set, which is pretty much the definition of a bad security idea. Ubuntu
enforces some restrictions on what constitutes a valid password.

7. Make an Internet connection with your E20.
The easiest way to do this is to make a wired connection to a host (i.e., router) that supports DHCP.
(Most do, by default.) However, if you wish to configure your device for a static IP address or configure
your Wi-Fi at this point, you may do so before making your Internet connection.

8. Install SNAP Connect, if necessary.
The SNAP Connect software that enables the connection from your E20 device to the rest of your SNAP-
powered network did not come preinstalled on E20 image versions before 1.0.8. Fortunately installation
is easy, if you need to do it. In your terminal window, while connected to the Internet, execute the

following command and check the image builder version™:
cat e20_version

This will tell you which version of the E20 firmware you have. If your version is earlier than 1.0.8,
perform the following command:
sudo —-H pip install snapconnect -1 https://update.synapse-wireless.com/pypi/
Remember that Ubuntu Linux does not, by default, enable root as a user. The sudo command
temporarily escalates your privileges to su, so the E20 will prompt you for your password.

9. Install PyCrypto, if necessary.
The PyCrypto project is required for using AES128 encryption on your radio network. If you needed to
install SNAP Connect, you also need to install PyCrypto. Installing PyCrypto is no more difficult than

installing SNAP Connect:
sudo pip install python-crypto

Your E20 is now ready to work with your SNAP-powered network. Your Python program, using the SNAP
Connect library, interfaces with the SM220 module directly, and the rest of your nodes through that. You can
also have full Internet access (either through a wired connection, Wi-Fi, or a point-to-point cellular connection).

Now it’s up to you to do awesome things with your SNAP-powered network. You can find examples of other
people’s efforts on the Synapse Wireless repository at GitHub: https://github.com/synapse-wireless. The site
includes sample projects for things like sending data collected by SNAP-powered nodes to cloud services, or an
E20-hosted web server. Download the code there, or fork it for your own projects. Better yet, contribute to the
code base for other users.

! Be aware that PDF files have been known to internally optimize text to control how it is stored and displayed. Copying and
pasting from a PDF file can sometimes result in extra linefeeds or other whitespace being inserted into your pasted text.
Before you paste any command in this document into your command prompt window, consider pasting into a text editor
(such as Notepad or gedit) to confirm that the text is formatted the way it should be.

H SNAP Connect E20

3. [E20 Software Specifics

The E20 uses Canonical’s Ubuntu 14.04, running a custom 3.10.17 Linux kernel based on the i.MX6 kernel by
Freescale. There are many resources out there for learning about Ubuntu online, and the topic possibilities far
exceed the scope of this manual. However there are a few details that warrant discussion.

Passwords and root Access

The default configuration for Ubuntu Linux is to have the root user disabled. This is a security precaution, as it
means a hacker who comes across a connection to your device does not automatically know the login name of a
user with full administrative rights to your device.

Instead, Ubuntu works with the sudo paradigm; when you need to perform a function that requires
administrative access, you preface your command with sudo and then are prompted for your password (as a
reminder that what you are doing could potentially affect the device’s ability to function).

The default snap user on the E20 has sudo access, and thus can perform all administrative tasks on the device. If
you wish, you can create your own user account on the device and grant it sudo access as well. Removing the
snap user would then further reduce a hacker’s knowledge of how to access the gateway.

If instead you would rather work with the root account, you can enable the account by assigning it a password:
sudo passwd root
Similarly, you can change the snap password with the same command:

sudo passwd snap

NOTE: No account can connect via SSH without a password, though connecting over a serial terminal
session is possible for accounts with no password.

E20-Specific Software Packages
The E20 comes with several support packages installed, and additional ones are available via apt and pip.

NOTE: Before installing new packages, be sure to run sudo apt-get update to sync your E20 with the
package servers so you will obtain the newest version. This action may take a few minutes, depending on
your Internet connection speed.

First, upgrade your SNAP Connect and the encryption libraries necessary for AES128 communications using
these commands:

sudo -H pip install snapconnect -i https://update.synapse-wireless.com/pypi/
sudo pip install -upgrade python-crypto

We also recommend you install a collection of utilities for administering the SM220:
sudo apt-get install e20-snap-utils
Finally, check for any updates to other E20-specific packages®:

sudo apt—-get install e20-cell-helpers e20-leds e20-buttons e20-gpio-scripts e20-
network-help

> Remember that copying and pasting from PDF files can give unpredictable results. Try pasting into a text editor first to be
sure that the complete command comes across as one line, and that there are not added characters in your pasted text.
Then, copy from the text editor and paste into your command window. Or, type it into the command window directly.

SNAP Connect E20 n

These installations include the following packages, which are installed in /usr/local/bin except where noted

otherwise:

e20-cell-helpers — a cell modem
support package

e20-leds, e20-buttons packages —
a simple LED and button control
scripts package

e20-gpio-scripts package -
Initializes GPIO lines (/etc/rc2.d)

e20-snap-utils package -
maintenance and support scripts
for SM220

This package depends on SNAP
Connect

Telit modem
example scripts to

reset, disable, enable

the cell modem

callvz — Invokes PPPD to
communicate with cell modem on
Verizon

power-cell-modem — Powers the
cell modem

enable-cell-modem — Enables the
cell modem

wake-cell-modem — Wakes the cell
modem

reset-cell-modem — Performs a
hard reset of the cell modem

Configuration and
control files for cell
modems

(/etc/ppp/peers)

telit-att — pppd configuration file
for ATT

telit-att-chat — scripted AT
commands issued to modem for
AT&T

telit-verizon — pppd configuration
file for Verizon

telit-verizon-disconnect —
Disconnects modem from tower

verizon-chat - scripted AT
commands issued to modem for
Verizon

led-1, led-2, led-3

Controls lighting for led 1, 2, and 3

button-1, button-2,
button-3

Reads button states

S30gpios

Startup script to initialize GPIO lines
package

wake_snap_node

wakes the SM220 (if it was
sleeping)

reset_snap_node

resets the SM220

flash-bridge

performs maintenance on the
SM220

SNAP Connect E20

4. E20 Physical Interface

The E20 includes three tri-color LEDs that you can control from your programs, plus three buttons you can
monitor. Control scripts in the e20-leds and e20-buttons packages assist with controlling the LEDs and
monitoring the buttons.

See the device diagram above for a map of which LED and which button is which.

E20 LEDs

Each of the three LEDs can be red, green, or amber. Each has a Bash script (provided by the e20-1eds package)
you can use to set the LED state:

sudo led-1 red
sudo led-2 green
sudo led-3 amber
sudo led-1 off

By default, all three of these LEDs will turn amber when the E20 is powered on and then turn off after the device
boots.

Each of the three LEDs is controlled by a pair of GPIOs from the i.MX6 processor, with one controlling the red,
one controlling the green, and the two of them together generating amber.

If you would rather control the LEDs using the GPIOs rather than the provided Bash scripts, these are the lines
for each LED and color:

GPIO 40 red

GPIO 41 green

(c][o):¥] red

GPIO 43 green

GPIO 44 red

GPIO 45 green

E20 Buttons

The three buttons on the left side of the E20 are fully user-accessible, too. You can monitor the button states at
GPIOs 117, 118, and 119 for button 1, button 2, and button 3, respectively. The e20-buttons package provides
Bash scripts that print the button status to STDIO and return the button status (as 1 for up or 0 for pressed):

[button-1

. button-2

. button-3
You can monitor the i.MX6 processor GPIOs directly rather than using the Bash scripts if you find that to be
easier. Unlike the Bash scripts that set states on the E20, these three scripts do not require sudo access to run.

SNAP Connect E20 n

5. Working With the SM220

The E20 contains a Synapse Wireless SM220 surface-mount node, which it can access serially via serial ports
/dev/snap0 and /dev/snapl connecting to UARTO and UART1 on the module, respectively. By default, SNAP-
powered modules communicate serially over UART1, so when making your SNAP Connect connection to the
SM220, you should use /dev/snap1 unless you have modified your SM220’s default UART settings.

Remember: SNAP Connect is not delivered on the E20. You install it as you configure your gateway.

For detailed instructions on SNAP Connect, please consult the SNAP Connect Python Package Manual, available
from http://forums.synapse-wireless.com.

In addition to the serial connections, there are two GPIO pins from the E20 that are tied to lines on the SM220
for controlling and signaling.

e GPIO 33: Tied to GPIO_F1 on the SM220, you can use this pin as a signaling semaphore or to wake the
SM220 when it is sleeping.
e GPIO 34: Tied to the Reset pin on the SM220, you can use this pin to reboot the module.

Waking the SM220

At times it may be helpful to have the SM220 in your E20 sleep, and then be woken by the E20’s processor. If
you have installed the recommended e20-snap-utils package, you can easily do this by defining GPIO_F1 on the
SM220 as a wake pin, like this:

from synapse.pinWakeup import *
from synapse.platforms import *

@setHook (HOOK_STARTUP)
def onStartup():
setPinDir (GPIO_F1, False)
setPinPullup (GPIO_F1, True)
wakeupOn (GPIO_F1, True, True)
Now, whether your SM220 is in a timed sleep or an untimed sleep, having the code on your E20 invoke this

command will wake the SM220:
/usr/local/bin/wake—-snap—node

This command invokes a Bash script to pull the E20s GPIO33 high, pause a second, and then pull the line low.
The Bash script must be invoked as sudo or by a process invoked as sudo. You can examine the Bash script to see
how the GPIO value is controlled for use in your own scripts, should you wish to use the pin as a one-bit signal to
the SM220.

Resetting the SM220

Just as you can wake a sleeping SM220, there is a pin you can use to reset your module should you need to. (This
is necessary, for example, when you reset factory parameters on the node.)

The e20-snap-utils package provides a script to assist with this, as well. Invoke this Bash script to briefly pull the
reset pin low and then release it to high, resetting the node:

/usr/local/bin/reset-snap—-node

While this is an important thing to be able to do, in most circumstances it will be less useful day-to-day. (If you
need to reset your SM220 daily, you have code issues you need to address.)

m SNAP Connect E20

Restoring Functionality to an Unresponsive SM220

The risk of having a module that provides many configuration options is that it expands the possibility of
misconfiguring something making you lose contact with the module. The SM220 is like that; there are many
things you can do to the module that could make it unresponsive, from setting an encryption key that you then
forget, to putting a script on the device that sends the node to sleep with an invalid wake pin defined.
(Remember that the E20 only has wake access on pin GPIO_F1.)

The Portal software from Synapse Wireless provides mechanisms for node recovery, but since you cannot make
a serial connection from the SM220 in your E20 to Portal, that functionality needs to exist on the E20 as well.
The e20-snap-utils package provides help here, too, with the f1ash-bridge Bash script, located in
/usr/local/bin/flash-bridge.

If you find that your SM220 node is unresponsive or unreachable over the air or serially, the first suspect is
typically the user script on the node. Many a programmer has accidentally specified the wrong wake pin or
accidentally dropped a node into an endless loop. So, typically the first thing to try in node recovery is forcibly
removing the SNAPpy script from your SM220:

sudo flash-bridge -e

This leaves your SM220’s NV parameters untouched, but removes the existing SNAPpy script from the node. You
can then load an appropriate script over the air or serially.

If this does not restore your access to the node, the most likely reason for your inability to communicate is
mismatched configuration (NV) parameters on the node. This could be the result of different encryption keys or
encryption types, misconfigured UARTSs, differences in how many CRCs are expected, or some other
configuration setting. The easiest thing to do next is to have the node default its NV parameters, which you can
also do with f1ash-bridge:

sudo flash-bridge -nv

This clears the encryption settings (no key, no encryption), sets UART connections to their default settings
(UART1, 38,400 baud, 8N1), and clears other settings to their default levels. (Refer to the SNAP Reference
Manual for what the defaults are for your firmware version.)

Typically it is best to start with clearing the script in your node before resetting its parameters, because it is
possible for the script to re-set (away from default values) parameters that you just reset (to default values).

REMEMBER: Resetting your SM220 to its default settings does not magically mean that other devices can talk to it,
over the air or serially. It does mean that you now know how to configure those devices to talk to it.

If you have another radio device on channel 13 using network ID OxABCD, you will have to set that device to
channel 4, network ID 0x1C2C to talk to your defaulted SM220. You can then use that radio connection to move
the E20’s SM220 to your preferred network settings. Or, you could change those settings serially from your E20 —
if your E20 is set to communicate serially the way that your SM220 is (considering encryption keys and types, serial
rates, etc.).

The point is: defaulting a device doesn’t mean you have it where you want it, only that you now know where to go
look for it.

SNAP Connect E20 m

Upgrading the SM220 Firmware

Synapse Wireless is always working to improve the experience with SNAP-powered networks, and that means
new firmware every now and then. If you find that you want to upgrade the firmware in your SM220, you can do
it over the air or you can do it serially from the E20. The flash-bridge command we’ve been using for clearing
scripts and resetting parameters saves the day again:

sudo flash-bridge -i <imageName>

For this command, <imageName> refers to an absolute or relative path to a Synapse firmware image file, which
will have the extension .sfi.

Loading new firmware erases the script previously in the node but does not change any NV parameters (unless
the two firmware versions, old and new, have different default values for something).

The SM220-Controlled LED

The SM220 controls the tri-color LED labeled “SNAP” on the case via GPIO_A4 (green) and GPIO_AS5 (red). (For
amber, use both green and red.) This LED is only accessible via the SM220. It cannot be controlled by the E20’s
i.MX6 processor, except through calls to the SM220.

These two 10 lines from the SM220 will light their respective colors when written high. This sample code
demonstrates its use:

from synapse.platforms import *

@setHook (HOOK_STARTUP)

def onStartup():
setPinDir (GPIO_A4, True)
setPinDir (GPIO_AS5, True)
LED_off ()

def LED_off ():
writePin (GPIO_A4, False)
writePin (GPIO_A5, False)

def LED_green() :
writePin (GPIO_A4, True)
writePin (GPIO_A5, False)

def LED_red():
writePin (GPIO_A4, False)
writePin (GPIO_A5, True)

def LED_amber () :

writePin (GPIO_A4, True)

writePin (GPIO_A5, True)
This is the only LED controllable directly from the SM220. The other three LEDs are controlled from the E20’s
i.MX6 processor.

m SNAP Connect E20

Controlling the E20 Processor from the SM220

Just as there are lines from the E20’s i.MX6 processor to the SM220 as a wake pin and a reset, there are
corresponding pins back to the i.MX6 from the SM220:

e GPIO_F2: Tied to GPIO 32 on the i.MX6, you can use this as a one-bit signal from the SM220 even when
SNAP Connect software is not running on the E20.

e GPIO_C4: Tied to the system reset line on the E20, active low, you can use this to reboot the i.MX6
processor without interrupting service on the SM220.

The reset line will force a reboot of the E20’s i.MX6 processor. This may cause the loss of unsaved data, and as
with any uncontrolled shutdown of a computer it is not recommended that you use this often. It is intended only
to recover an unresponsive E20. The following sample code demonstrates rebooting the i.MX6 processor from
the SM220:

from synapse.platforms import *

@setHook (HOOK_STARTUP)
setPinPullup (GPIO_C4, True)
writePin (GPIO_C4, True)
setPinDir (GPIO_C4, True)

def resetE20() :

pulsePin (GPIO_C4, 1, False)
In contrast, the GPIO_F2 pad on the SM220 can signal the GPIO 32 line on the i.MX6 without any danger to
either system, and the signal can be processed or ignored by your E20 program as you choose. The following
sample Bash script demonstrates how to watch for the pin change from your E20 perspective:
if [[! -d /sys/class/gpio/gpio32/ 11 ; then

echo 32 > /sys/class/gpio/export
echo in > /sys/class/gpio/gpio32/direction

fi

while [[“cat /sys/class/gpio/gpio32/value’ != 0 1] ; do
sleep 1

done

echo "Got interrupt!"

SNAP Connect E20 m

6. Accessing the MicroSD Slot

The E20 includes an on the board® microSD slot for reflashing your device to its factory state. You can also use a
card in this slot as additional flash storage on your gateway if you need it.

The following instructions will work for ext4-, FAT32-, or exFAT-formatted cards. Ubuntu Linux 14.04 does not
support exFAT by default, so you will first need to run the following command to install exFAT support:

sudo apt-get install exfat-fuse exfat-utils

To access a card in the microSD slot:

1. Insert the microSD card into the microSD card slot under the access cover on the rear of the E20:

e Slide the microSD card carrier toward the bottom of the unit (away from the antenna end) about a
sixteenth of an inch (1.5 mm).

e Open the card carrier frame. It is hinged at the top (antenna end) edge.

e Insert your microSD card, contacts first, with the contacts exposed.

e Close the card carrier frame, and slide it toward the top of the unit to lock the card in place.

2. Create a mount point for the card. In this example, the directory will be named sdcard, and it will be in
the /mnt directory. (If you have previously done this, you do not need to repeat it.)

sudo mkdir /mnt/sdcard

3. Mount the card.
a. For cards formatted with the ext4 file system:

sudo mount -t ext4 /dev/mmcblk0 /mnt/sdcard
b. For cards formatted with the FAT32 file system:

sudo mount -t vfat /dev/mmcblk0O /mnt/sdcard
c. For cards formatted with the exFAT file system:

sudo mount -t exfat /dev/mmcblk0 /mnt/sdcard

4. You can confirm it is mounted by using the mount command and looking for an entry like the following
(with the appropriate file system format):

/dev/mmcblk0 on /mnt/sdcard type ext4d (rw)

3 Early versions of the hardware may not include this feature. See the Factory Restore / Re-Flashing Your E20 section later in
this document to determine whether your hardware has it.

m SNAP Connect E20

7. Using the Cell Modem

The E20 currently supports the Telit DE910-DUAL on Verizon Wireless. Support for AT&T and others is

forthcoming.

Activating the Telit Modem on the Verizon Network

Install the E20 Gateway at the location where it will reside during normal operation, then power it to ensure

your cellular provider will be able to communicate with it during the activation process.

Setup

You will need to have the following information available to set up service.

Product Model Number : Synapse E20

Product Manufacturer. : Synapse

The modem MEID# : (Unique number located on the E20 label. Highlighted in yellow.)
Type of Modem : M2M (Note: This isn’t a normal cell phone.)

You will also need to know:

e If you will be using PPP connections and if tethering

needs to be added to your account options.

e Your data plan usage requirements.

e A contact name for device issues.

e The location (ZIP Code/City/ State) where the gateway

will reside

e A unique device name for each E20 being activated.

ETH MAC: 001C2C0618E95

E20 o
SNAP MAGC: 001C2C1B26071EC5 kr!'__ ;p
[T=4

WIFI MAC: 00078001BFFDCOSF iicpy#
MEID: A1000042F15A7B ([E1%3%

DC:1544

This device complies with part 16 of FCC Rules

Operation is subject tc the following twe conditions

1) This device may not cause harmful interference, and

2) this device must accept any interference received
includina interference that mav cauge undesired ooeration

An example would be E20-071EC5. This uses the unique SNAP address on the unit label (shown

highlighted in red). Using the last 6 hex numbers will ensure each unit is unique and visually traceable.

Modem Activation

Contact a Verizon agent at 1-800-837-4966 and set up a contract, or contact your corporate Verizon

representative if an account already exists.

Note: The agent will ask specific questions about the type of plan that will be used. This will depend on
your application and related complexity, so be sure to have all information. The agent will assign a phone
number, inform you when activation will be complete, and finalize integration between the Gateway and

your system.

Email confirmations will be required by the designated account owner. If installation is performed away from the

designated account owner, consider arrangements for email confirmation and completion of the activation

process.

SNAP Connect E20

Final Steps — Verifying the Modem was Successfully Added to the Network

After you complete the activation with your Verizon agent, your E20 should automatically perform a special
download (called the Over The Air Service Provision, or OTASP) from Verizon to enable it on the network. This will
happen automatically when powered on and does not require any input from you, but it cannot occur until it has

been activated on a plan.

You can verify the OTASP process has completed by checking for the presence of two files on your E20:

® /etc/DE910_programmed_datetime
® /etc/DE910_MEID

/etc/DE910_programmed_datetime contains the date and time the modem successfully completed the OTASP
procedure. If this file does not exist, the modem has not yet completed the OTASP. If it does, you can use the cat

command to view the file’s contents:

cat /etc/DE910_programmed_datetime

Thu May 10 17:20:52 CDT 2016

The file /etc/DE910_MEID contains the MEID of the modem. This is written after the OTASP process completes.

cat /etc/DE910_MEID
A1000042F15A7B

In most cases, the modem will be able to connect to the network and obtain an IP address within minutes after the

OTASP completes. However, it rare cases it may take up to four hours.

Initiating a Data Connection on the Verizon Network

To initiate a PPPD session on Verizon Wireless:

/usr/local/bin/callvz &

To terminate the connection:

poff telit-verizon

These scripts are not guaranteed to work with your network or data plan, and are provided for illustrative

purposes only.

Troubleshooting Cellular Connectivity

If you are deploying the E20 in a situation that will be dependent on the cellular connection for connectivity, you
will most likely want to take some precautions to ensure that the connection re-establishes itself in the event of
failure (signal and handshaking issues, etc.) There are several ways to potentially address this, and the best way

is largely depended on your needs and setup.

e The addition of a ‘persist’ string to your PPP configuration file will make PPPD attempt to reconnect if it
detects that the connection to the tower has been dropped. The PPPD session initiated by cal1vz uses
/etc/ppp/peers/telit-verizon as the PPP configuration file.

e You can create a background shell script, monit utility, or cron job that monitors if PPPD is running, and
re-launches it if it detects it is not.

m SNAP Connect E20

e Use of the reset-cell-modem script, which pulls the reset line on the cell modem, hardware resetting it
if needed.

SNAP Connect E20

8. Common Linux Operations

The E20 uses Ubuntu 14.04 as its operating system. You will need to have some Linux knowledge to be able to
use the gateway device. The Internet provides ample documentation for all operations within the capability of
the E20, and “Linux Manual” is beyond the scope of this document.

However there are a few operations that are likely to be popular, based on the nature of using a gateway device.
The following information may save you some time (and frustration) on searching the Internet.

Editing Linux Files

Many of the configuration suggestions below instruct you to create new files on your E20 or edit existing files.
There are several ways to go about this, depending on your choice of methods and tools.

The method that old-school Linux gurus might mock you for not using is the classic Vim (Vi IMproved) text
editor. If you are already comfortable in vi or Vim, kindly skip to the next section.”

For people who prefer a little more help on screen, the popular nano text editor is included in the basic E20
distribution. You can edit a file directly by typing nano /path/to/filename, or open nano and then open the
file directly from within the editor. Remember that if you are attempting to edit a file that your user does not
own (e.g., files in /etc that are owned by root) you should preface your nano command with the sudo
command in order to open the editor with escalated privileges.

The third option for creating or editing files for the E20 is to create the files on another system completely and
them move them into place on the E20. You can move them over an SSH connection or by “sneaker net” using a
USB drive. This is the most cumbersome of the options for edits to existing files or for small changes to files. But
for more elaborate software suites, it may be appropriate to install your package this way. Remember, if you do,
that Windows and Linux use different line endings. You may need to update your file’s line endings to the Linux
standard using a command like this:

sed -i -e 's/\r//' file

Making Your Software Run at Startup

There are two main types of things you might want to invoke at startup:

e Scripts that run to completion, such as configuration or logging scripts.
e Applications that you want to start as a service that can be started, stopped, and restarted.

As with many things in the Linux world, both of these are easy once you know how.

Running a Script to Completion

Like many Linux distributions, Ubuntu does not follow all the standards. One such place is that by default,
Ubuntu boots to runlevel 2, which allows for multiuser connectivity (per the standards) and networking (which
the standards provide at runlevel 3). This is important because it affects where you should add your run-once
scripts to have the execute.

There is a Bash script located at /etc/rc.local that executes every time the runlevel changes to a new
multiuser level. In normal operation, the E20 boots to runlevel 2 and stays there. If you are not actively
initializing a new runlevel, this script will only run on boot. You can add commands to this Bash script, which by
default does nothing.

* Emacs is not included in the base Linux distribution on the E20. You can get it using sudo apt-get install emacs

m SNAP Connect E20

As an alternative, you can add a Bash script in the /etc/rc2.d/ directory to have the script execute each time
runlevel 2 is initialized. (This script would run before the rc.1ocal script executes.) This /etc/rc2.d/ directory
contains a README file that provides some instructions for naming and configuring your script to run on boot.

Starting a Service

For applications you want to have started as a service, which can be started, stopped, and restarted, you can
create an upstart service at /etc/init/.

As an example of making a SNAP Connect application run as a service, create a file named
/etc/init/MyOwnApp.conf and put the following text in it:

SNAP Connect - start a SNAP Connect application as a service
#
description "Start SNAP Connect"

start on runlevel [2]
stop on runlevel [!2]

exec python /home/snap/my_snapconnect_example.py

The command python /home/snap/my_snapconnect_example.py Would then be executed on boot and
stopped on shutdown (or on transition to any other runlevel). You could also administer the application with
these commands:

sudo service MyOwnApp start

sudo service MyOwnApp restart

sudo service MyOwnApp stop

This basic example gives you a starting point for starting your own services. Examine the other . conf files in
the /etc/init/ directory for further examples of how to configure your services.

Setting Your E20’s Clock

The E20 has an NTP client that connects to time servers on the Internet to keep its clock set appropriately (to
UTC). However the system clock and the hardware clock can get out of sync over time, resulting in the E20 using
the hardware clock’s time when Internet connectivity isn’t available.

First, you should specify the timezone in which your device will reside. An easy way to do this is to use tzdata,
which allows you to select the general region, and then select the specific zone for your location.

sudo dpkg-reconfigure tzdata

Next, and only if the E20’s date is not set (i.e. it is not connected to a network so it does not set the date from an
NTP server, and the hardware clock has never been set), set the date manually. The following example sets the
date to April 20, 2016, at 12:30:59 p.m.

sudo date —--set “2016-04-30 12:30:59”
Sat Apr 30 12:30:59 CDT 2016

You can set the hardware clock from the system clock using the hwclock command.

sudo hwclock -wu

SNAP Connect E20 m

Resetting a Lost User Password

If there’s one thing you can count on, it’s that at some point a user will forget his or her password. If you have
another administrative (sudo) user defined on the device, that user can reset the lost password. However if you
have only one administrative user defined and lose that password, you can still recover your E20 — as long as
you have physical access and can make a serial connection over the microUSB connection.

e Make your serial connection (as described earlier in this document) and reboot the E20.
e During the boot process, Das U-Boot prints text to STDOUT. When you see the message “Hit any key
to stop autoboot” onthe screen, press a key. This will drop you into a U-Boot prompt.

e From the U-Boot command prompt, enter the following command:
U-Boot-E20> setenv mmcargs 'setenv bootargs console=${console}, ${baudrate} —--no-log
fec.macaddr=${macaddr} root=${mmcroot} rootdelay=2 rw single'

e Then, execute this command:
U-Boot—-E20> boot

This will boot the E20 gateway into a mode where the user is root, with no password specified. From there you
can administratively set your user’s password using the passwd command. (Try passwd --help for guidance.)

Typical Steps for Configuring Wi-Fi

By default, the Wi-Fi interface on the E20 is not active on startup. And, as with any system that offers a lot of
options, figuring out how to set up your connections can be daunting. These pointers should make your task a
lot easier.

Enabling Wi-Fi

Edit the interfaces file at /etc/network/interfaces file using the editor of your choice.

Remove the # from the beginning of the following line:

#auto wlanO

On the next reboot, the Wi-Fi connection will automatically activate, though additional configuration is

necessary for it to connect.

Connecting to an Access Point

Connecting to a access point using WPA encryption is fairly easy. You need to provide the
/etc/wpa_supplicant.conf file with your desired network SSID and a passphrase key.

The easiest way to do this is to use the wpa_passphrase application:
sudo wpa_passphrase 'myssid' 'mypassword' >> /etc/wpa_supplicant.conf

This command generates a passphrase key from your password and then appends the appropriate text to the
/etc/wpa_supplicant.conf file.

After you do this, you should edit the /etc/wpa_supplicant.conf file to remove the line that includes the clear
text of your passkey, and to make sure there are not issues with conflicting network entries. You may also need
additional options, depending on your network setup. (Such configuration is beyond the scope of this
document.)

You can now reboot (or use ifup wlan0) to bring up the interface and connect to the network.

m SNAP Connect E20

Setting Up Access-Point (AP) Mode

You can establish your E20 gateway to work as an access point for other Wi-Fi devices. This can be useful if, for
example, you want to be able to connect directly to your gateway with a laptop or phone to administer your
application.

Update udhcpd

Begin by making sure your udncpd application is up-to-date.

sudo apt-get install udhcpd
Set Your SSID and Passphrase

Generate your passphrase using the wpa_passphrase application. You can direct this output to a file for recall
later, or track it in the method of your choice.
$ wpa_passphrase 'myssid' 'mypassword'
network={
ssid="myssid"
#psk="mypassword"
Psk=2£f0568b3492812bd56b946dbaf3fd7dd66909a4602a09aa6462£f£0579490b025¢c
}

Set up /etc/udhcpd.conf

The interface definition in the /etc/udhcpd. conf file defaults to etho. Find the definition in the file (typically
within the first dozen lines, but it may vary depending on your current configuration) and change it to wiano
instead.

The start and end of the IP lease block

start 192.168.0.20 #default: 192.168.0.20
end 192.168.0.254 #default: 192.168.0.254
The interface that udhcpd will use

interface wlanO #default:ethO0

Set udhcpd to Run by Default

Edit the /etc/default/udhcpd file to comment the line that sets the pHCPD_ENABLED parameter to "no".
#DHCPD_ENABLED="no"

Note that if you are feeling contrary, you can instead set this parameter to "yes™.
Assign a Static IP Address

Edit the /etc/network/interfaces file to assign a static IP address so the gateway can act as an access point. By
default, the file contains this configuration text:
iface wlanO inet dhcp

wpa—-conf /etc/wpa_supplicant.conf

wpa—-driver wext
You can either replace that text with the new configuration text, or comment those lines by inserting a #
character at the beginning of each line, and then add your new configuration text.
iface wlan0O inet static

address 192.168.0.1

netmask 255.255.255.0
Specify the IP address you wish to use for your access point, 192.168.0.1 in the example above. You should
choose an appropriate private network address, suitable for your needs.

SNAP Connect E20 m

	Contact us
	1. Overview
	The Linux Processor
	The SNAP-based RF Module
	The Symbiosis
	The Device

	2. Getting Started
	3. E20 Software Specifics
	Passwords and root Access
	E20-Specific Software Packages

	4. E20 Physical Interface
	E20 LEDs
	E20 Buttons

	5. Working With the SM220
	Waking the SM220
	Resetting the SM220
	Restoring Functionality to an Unresponsive SM220
	Upgrading the SM220 Firmware
	The SM220-Controlled LED
	Controlling the E20 Processor from the SM220

	6. Accessing the MicroSD Slot
	7. Using the Cell Modem
	Activating the Telit Modem on the Verizon Network
	Setup
	Modem Activation
	Final Steps – Verifying the Modem was Successfully Added to the Network
	Initiating a Data Connection on the Verizon Network

	Troubleshooting Cellular Connectivity

	8. Common Linux Operations
	Editing Linux Files
	Making Your Software Run at Startup
	Running a Script to Completion
	Starting a Service

	Setting Your E20’s Clock
	Resetting a Lost User Password
	Typical Steps for Configuring Wi-Fi
	Enabling Wi-Fi
	Connecting to an Access Point

