: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

SEMTECH
SC1102/SC1102A Synchronous Voltage Mode Controller for Distributed Power Supply Applications

POWER MANAGEMENT

Description

The SC1102 and SC1102A are low-cost, full featured, synchronous voltage-mode controllers designed for use in single ended power supply applications where efficiency is of primary concern. Synchronous operation allows for the elimination of heat sinks in many applications. The SC1102s are ideal for implementing DC/DC converters needed to power advanced microprocessors in low cost systems, or in distributed power applications where efficiency is important. Internal level-shift, high-side drive circuitry, and preset shoot-thru control, allows the use of inexpensive N -channel power switches.

SC1102s features include temperature compensated voltage reference, triangle wave oscillator and current sense comparator circuitry. Power good signaling, shutdown, and over voltage protection are also provided. The SC1102 operates at a fixed frequency of 200 kHz and the SC1102A at 500 kHz , providing a choice for optimum compromise between efficiency, external component size, and cost.

Two SC1102s can be used together to sequence power up of telecom systems. The power good of the first SC1102 connected to the enable of the second SC1102 makes this possible.

Features

- 1.265 V reference available
- Synchronous operation for high efficiency (95\%)
- $\mathrm{R}_{\text {DS(ON) }}$ current sensing
- On-chip power good and OVP functions
- Small size with minimum external components
- Soft Start
- Enable function
- 14 Pin SOIC lead free package available. Fully WEEE and RoHS compliant

Applications

- Microprocessor core supply
- Low cost synchronous applications
- Voltage Regulator Modules (VRM)
- DDR termination supplies
- Networking power supplies
- Sequenced power supplies

Typical Application Circuit

Figure 1.
NOTE:
*) Vout $=1.265 \times(1+\mathrm{R} 8 / \mathrm{R} 7)$

POWER MANAGEMENT

Absolute Maximum Ratings

Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied. Exposure to Absolute Maximum rated conditions for extended periods of time may affect device reliability.

Parameter	Symbol	Maximum	Units
VCC, BSTL to GND	$\mathrm{V}_{\text {IN }}$	-1.0 to 14	V
PGND to GND		± 0.5	V
PHASE to GND ${ }^{(1)}$		-0.5 to 18	V
BSTH to PHASE		14	V
Thermal Resistance Junction to Case	θ_{JC}	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Ambient	θ_{JA}	115	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range	T_{A}	0 to 70	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	T_{J}	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering) 10 Sec.	$\mathrm{T}_{\text {LEAD }}$	300	${ }^{\circ} \mathrm{C}$

Note: (1) -1.5 V to 20 V for 25 ns repetitive every cycle.

Electrical Characteristics

Unless specified: $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $12.6 \mathrm{~V} ; \mathrm{GND}=\mathrm{PGND}=0 \mathrm{~V} ; \mathrm{FB}=\mathrm{V}_{\mathrm{o}} ; \mathrm{V}_{\text {BSTL }}=12 \mathrm{~V} ; \mathrm{V}_{\text {BSTH-PHASE }}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Power Supply					
Supply Voltage	VCC	4.2		12.6	V
Supply Current	$\mathrm{EN}=\mathrm{VCC}$		6	10	mA
Line Regulation	$\mathrm{VO}=2.5 \mathrm{~V}$		0.5		\%
Error Amplifier					
Gain (AOL)			35		dB
Input Bias			5	8	$\mu \mathrm{A}$
Oscillator					
Oscillator Frequency	SC1102	170	200	230	kHz
	SC1102A	425	500	575	
Oscillator Max Duty Cycle		90	95		\%
MOSFET Drivers					
DH Source/Sink	$\begin{aligned} & \mathrm{BSTH}-\mathrm{DH}=4.5 \mathrm{~V}, \\ & \mathrm{DH}-\mathrm{PHASE}=2 \mathrm{~V} \end{aligned}$	1			A
DL Source/Sink	$\begin{gathered} \mathrm{BSTL}-\mathrm{DL}=4.5 \mathrm{~V} . \\ \mathrm{DL}-\mathrm{PGND} .=2 \mathrm{~V} \end{gathered}$	1			A

POWER MANAGEMENT
Electrical Characteristics (Cont.)
Unless specified: $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $12.6 \mathrm{~V} ; \mathrm{GND}=\mathrm{PGND}=0 \mathrm{~V} ; \mathrm{FB}=\mathrm{V}_{\mathrm{o}} ; \mathrm{V}_{\text {BSTL }}=12 \mathrm{~V} ; \mathrm{V}_{\text {BSTH-PHASE }}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
PROTECTION					
OVP Threshold Voltage			20		\%
OVP Source Current	$\mathrm{V}_{\text {ovp }}=3 \mathrm{~V}$	10			mA
Power Good Threshold		88		112	\%
Dead Time		45		100	ns
Over current Set Isink	$2.0 \mathrm{~V} \leq \mathrm{V}_{\text {OCSET }} \leq 12 \mathrm{~V}$	180	200	220	$\mu \mathrm{A}$
Reference					
Reference Voltage	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1.252	1.265	1.278	V
Accuracy		-1		+1	\%
Soft Start					
Charge Current	$\mathrm{V}_{\text {SS }}=1.5 \mathrm{~V}$	8.0	10	12	$\mu \mathrm{A}$
Discharge Current	$\mathrm{V}_{\text {SS }}=1.5 \mathrm{~V}$		1.5		$\mu \mathrm{A}$

NOTES:

(1) Specification refers to application circuit (Figure 1).
(2) This device is ESD sensitive. Use of standard ESD handling precautions is required.

POWER MANAGEMENT

Pin Configuration

Pin Descriptions

Pin \#	Pin Name	Pin Function
1	VCC	Chip supply voltage
2	PWRGD	Logic high indicates correct output voltage
3	OVP	Over voltage protection.
4	OCSET	Sets the converter overcurrent trip point
5	PHASE	Input from the phase node between the MOSFET'S
6	DH	High side driver output
7	PGND	Power ground
9	BSTL	Low side driver output
10	SENSE	Bootstrap, low side driver.
11	VREF	Vootstrap, high side driver.
12	GS/SHDN	Buffered band gap voltage reference.
13		Soft start. A capacitor to ground sets the slow start time.
14		

NOTE:

(1) All logic level inputs and outputs are open collector TTL compatible.

POWER MANAGEMENT

Block Diagram

Applications Information - Theory of Operation

Synchronous Buck Converter

Primary $\mathrm{V}_{\text {core }}$ power is provided by a synchronous, volt-age-mode pulse width modulated (PWM) controller. This section has all the features required to build a high efficiency synchronous buck converter, including "Power Good" flag, shut-down, and cycle-by-cycle current limit.

The output voltage of the synchronous converter is set and controlled by the output of the error amplifier. The external resistive divider reference voltage is derived from an internal trimmed-bandgap voltage reference (See Fig.
1). The inverting input of the error amplifier receives its voltage from the SENSE pin.

The internal oscillator uses an on-chip capacitor and trimmed precision current sources to set the oscillation frequency to $200 \mathrm{kHz} / 500 \mathrm{kHz}$. The triangular output of the oscillator sets the reference voltage at the inverting input of the comparator. The non-inverting input of the comparator receives it's input voltage from the error amplifier. When the oscillator output voltage drops below the error amplifier output voltage, the comparator output goes high. This pulls DL low, turning off the low-side FET, and DH is pulled high, turning on the high-side FET (once the cross-current control allows it). When the oscillator voltage rises back above the error amplifier output voltage, the comparator output goes low. This pulls DH
low, turning off the high-side FET, and DL is pulled high, turning on the low-side FET (once the cross-current control allows it).

As SENSE increases, the output voltage of the error amplifier decreases. This causes a reduction in the ontime of the high-side MOSFET connected to DH, hence lowering the output voltage.

Under Voltage Lockout

The under voltage lockout circuit of the SC1102 assures that the high-side MOSFET driver outputs remain in the off state whenever the supply voltage drops below set parameters. Lockout occurs if V_{cc} falls below 4.1V. Normal operation resumes once $V_{c c}$ rises above 4.2V.

Over-Voltage Protection

The over-voltage protection pin (OVP) is high only when the voltage at SENSE is 20% higher than the target value programmed by the external resistor divider. The OVP pin is internally connected to a PNP's collector.

Power Good

The power good function is to confirm that the regulator outputs are within $+/-10 \%$ of the programmed level. PWRGD remains high as long as this condition is met. PWRGD is connected to an internal open collector NPN transistor.

POWER MANAGEMENT

Applications Information (Cont.)

Soft Start

Initially, SS $/ \overline{\text { SHDN }}$ sources $10 \mu \mathrm{~A}$ of current to charge an external capacitor. The outputs of the error amplifiers are clamped to a voltage proportional to the voltage on SS/SHDN. This limits the on-time of the high-side MOSFETs, thus leading to a controlled ramp-up of the output voltages.

$\mathbf{R}_{\mathrm{DS}(0 \mathrm{~N})}$ Current Limiting

The current limit threshold is set by connecting an external resistor from the V_{cc} supply to OCSET. The voltage drop across this resistor is due to the $200 \mu \mathrm{~A}$ internal sink sets the voltage at the pin. This voltage is compared to the voltage at the PHASE node. This comparison is made only when the high-side drive is high to avoid false current limit triggering due to uncontributing measurements from the MOSFETs off-voltage. When the voltage at PHASE is less than the voltage at OCSET, an overcurrent condition occurs and the soft start cycle is initiated. The synchronous switch turns off and SS/SHDN starts to sink $2 \mu \mathrm{~A}$. When $\mathrm{SS} / \overline{\mathrm{SHDN}}$ reaches 0.8 V , it then starts to source $10 \mu \mathrm{~A}$ and a new cycle begins.

Hiccup Mode

During power up, the SS/ $\overline{\operatorname{SHDN}}$ pin is internally pulled low until VCC reaches the undervoltage lockout level of 4.2 V . Once V_{cc} has reached 4.2 V , the $\mathrm{SS} / \overline{\mathrm{SHDN}}$ pin is released and begins to source $10 \mu \mathrm{~A}$ of current to the external soft-start capacitor. As the soft-start voltage rises, the output of the internal error amplifier is clamped to this voltage. When the error signal reaches the level of the internal triangular oscillator, which swings from 1V to 2 V at a fixed frequency of $200 \mathrm{kHz} / 500 \mathrm{kHz}$, switching occurs. As the error signal crosses over the oscillator signal, the duty cycle of the PWM signal continues to increase until the output comes into regulation. If an overcurrent condition has not occurred the soft-start voltage will continue to rise and level off at about 2.2 V .

An over-current condition occurs when the high-side drive is turned on, but the PHASE node does not reach the voltage level set at the OCSET pin. The PHASE node is sampled only once per cycle during the valley of the triangular oscillator. Once an over-current occurs, the highside drive is turned off and the low-side drive turns on and the SS/ $\overline{\text { SHDN }}$ pin begins to sink 2 uA . The soft-start voltage will begin to decrease as the 2 uA of current discharges the external capacitor. When the soft-start voltage reaches 0.8 V , the $\mathrm{SS} / \mathrm{SHDN}$ pin will begin to source 10uA and begin to charge the external capacitor causing the soft-start voltage to rise again. Again, when the softstart voltage reaches the level of the internal oscillator, switching will occur.

If the over-current condition is no longer present, normal operation will continue. If the over-current condition is still present, the SS/SHDN pin will again begin to sink 2uA. This cycle will continue indefinitely until the overcurrent condition is removed.

In conclusion, below is shown a typical " 12 V Application Circuit" which has a BSTH voltage derived by bootstrapping input voltage to the PHASE node through diode D1. This circuit is very useful in cases where only input power of 12 V is available.

In order to prevent substrate glitching, a small-signal diode should be placed in close proximity to the chip with cathode connected to PHASE and anode connected to PGND.

Typical 12V Application Circuit with Bootstrapped BSTH

*) Vout $=1.265 \times(1+$ R9/R8)

POWER MANAGEMENT

Typical Characteristics

Output Ripple Voltage

Ch1: Vo_rpl

1. $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=3.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OUT}}=12 \mathrm{~A}$

Ch1: Vo_rpl
2. $\mathrm{V}_{\text {IN }}=5 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=1.3 \mathrm{~V} ; \mathrm{I}_{\text {OUT }}=12 \mathrm{~A}$

Wave forms are shown for SC1102 and are similiar for SC1102A but at a higher frequency.

Gate Drive Waveforms

Ch1: Top FET
Ch2: Bottom FET

Ch1: Top FET
Ch2: Bottom FET

Typical Characteristics (Cont.)

Ch1: Vo_rpl
2. $\mathrm{V}_{\text {IN }}=5 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=1.3 \mathrm{~V} ; \mathrm{I}_{\text {OUT }}=12 \mathrm{~A}$

Ch1: Top FET
Ch2: Bottom FET

Error Amplifier, Gain and Phase

POWER MANAGEMENT

Typical Characteristics (Cont.)

Hiccup Mode

Start Up Mode

POWER MANAGEMENT

Outline Drawing - SOIC - 14

SIDE VIEW

- See detail A
detail A
NOTES:

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
2. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE-H-
3. DIMENSIONS "E1" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS
4. REFERENCE JEDEC STD MS-012, VARIATION AB.

Land Pattern - SOIC - 14

NOTES:

1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.
2. REFERENCE IPC-SM-782A, RLP NO. 302A.

Contact Information

Semtech Corporation

Power Management Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805)498-2111 FAX (805)498-3804

