

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

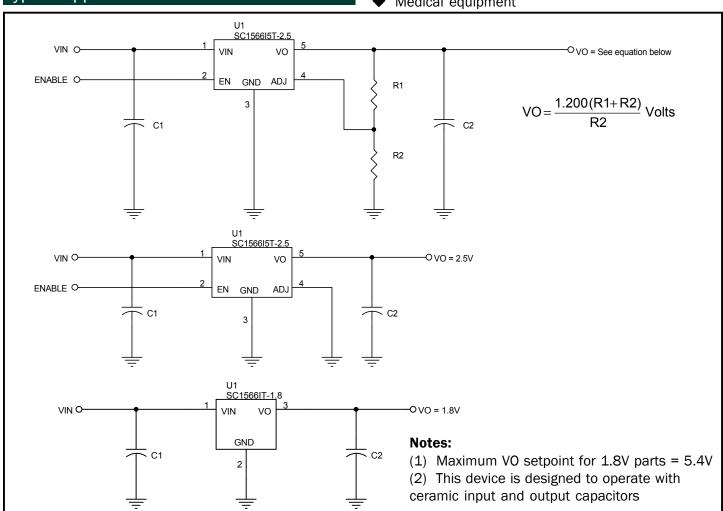
SC1566 **Very Low Dropout** 3.0 Amp Regulator With Enable

POWER MANAGEMENT

Description

The SC1566 is a high performance positive voltage regulator designed for use in applications requiring very low dropout voltage at up to 3 Amps. Since it has superior dropout characteristics compared to regular LDOs, it can be used to supply 2.5V on motherboards or 2.8V on peripheral cards from the 3.3V supply thus allowing heat sink size reduction or elimination. Additionally, the five pin versions of SC1566 have an enable pin, to further reduce power dissipation while shut down. The SC1566 provides excellent regulation over variations in line, load and temperature.

The SC1566 is available as three terminal fixed output voltage and five terminal fixed or adjustable output voltage devices with enable. Two package options are available: T0-263 and T0-220.


Features

- 350mV dropout @ 3A
- Adjustable output from 1.2V to 4.8V
- 2.5V and 1.8V options (5 pin parts also adjustable externally using resistors)
- Over current and over temperature protection
- Enable pin
- 10µA quiescent current in shutdown
- Low reverse leakage (output to input)
- Full industrial temperature range
- TO-220 and TO-263 packages

Applications

- Battery powered systems
- Motherboards and notebook computers
- Peripheral cards
- Network cards
- Set top boxes
- Medical equipment

Typical Application Circuits⁽¹⁾⁽²⁾

Absolute Maximum Ratings

Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied.

Parameter	Symbol	Max	Units
Input Voltage	V _{IN}	7	V
Power Dissipation	$P_{_{D}}$	Internally Limited	W
Thermal Resistance Junction to Ambient TO-263-X TO-220-X	θ_{JA}	60 50	°C/W
Thermal Resistance Junction to Case TO-263-X TO-220-X	$\theta_{ extsf{JC}}$	3 3	°C/W
Operating Ambient Temperature Range	T _A	-40 to +85	°C
Operating Junction Temperature Range	T_{J}	-40 to +150	°C
Storage Temperature Range	$T_{\mathtt{STG}}$	-65 to +150	°C
Lead Temperature (Soldering) 10 Sec.	T _{LEAD}	300	°C
ESD Rating (Human Body Model)	V _{ESD}	2	kV

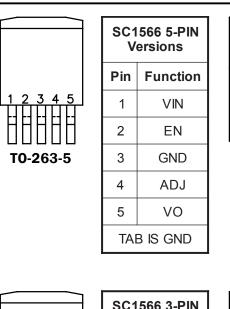
Electrical Characteristics

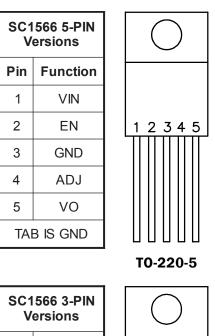
Unless specified: $V_{EN} = V_{IN}$. Adjustable Option ($V_{ADJ} > V_{TH(ADJ)}$): $V_{IN} = 2.2V$ to 5.5V and $I_{O} = 10\mu$ A to 3A. Fixed Options ($V_{ADJ} = GND$): $V_{IN} = (V_{O} + 0.7V)$ to 5.5V and $I_{O} = 0$ A to 3A. Values in **bold** apply over the full operating temperature range.

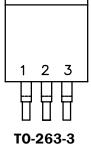
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
VIN						
Supply Voltage Range	V _{IN}		2.2		5.5	V
Quiescent Current	I _Q	V _{IN} = 3.3V		0.75	1.75	mA
		$V_{IN} = 5.5V, V_{EN} = 0V$		10	35	μA
vo						
Output Voltage ⁽¹⁾	V _o	$V_{_{\rm I\!N}}$ = $V_{_{\rm O}}$ + 0.7V, $I_{_{\rm O}}$ = 10mA	-1%	V _o	+1%	V
(Internal Fixed Voltage)			-2%		+2%	
Line Regulation ⁽¹⁾	REG _(LINE)	$V_{IN} = (V_{O} + 0.25V)$ to 5.5V, $I_{OUT} = 10$ mA		0.035	0.3	%
Load Regulation ⁽¹⁾	REG _(LOAD)	$V_{IN} = V_{O} + 0.7V$		0.2	0.4	%
Dropout Voltage(1)(2)	V _D	I _o = 10mA		1	5	mV
					10	
		I _o = 500mA		75	100	mV
					150	

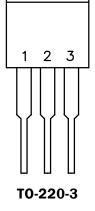
Electrical Characteristics (Cont.)

Unless specified: $V_{EN} = V_{IN}$. Adjustable Option ($V_{ADJ} > V_{TH(ADJ)}$): $V_{IN} = 2.2 \text{V}$ to 5.5V and $I_{O} = 10 \mu\text{A}$ to 3A. Fixed Options ($V_{ADJ} = GND$): $V_{IN} = (V_{O} + 0.7 \text{V})$ to 5.5V and $I_{O} = 0.0 \text{A}$ to 3A. Values in **bold** apply over the full operating temperature range.


Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
VO (Cont.)			· · ·			-
Dropout Voltage(1)(2)		I ₀ = 1.5A		200	300	mV
					400	
		I ₀ = 3A		350	450	mV
					600	
Minimum Load Current(3)	I _o	V _{IN} = V _O + 0.7V		1	10	μA
Current Limit	I _{CL}		3.0	4.5	6.5	А
ADJ						
Reference Voltage ⁽¹⁾	V _{REF}	$V_{IN} = 2.2V, V_{ADJ} = V_{OUT}, I_{O} = 10 \text{mA}$	1.188	1.200	1.212	V
			1.176		1.224	
Adjust Pin Current(4)	I _{ADJ}	$V_{ADJ} = V_{REF}$		10	200	nA
Adjust Pin Threshold(5)	V _{TH(ADJ)}		0.10	0.20	0.40	V
EN						
Enable Pin Current	I _{EN}	$V_{EN} = 0V, V_{IN} = 3.3V$		1.5	10	μA
Enable Pin Threshold	V _{IH}	V _{IN} = 3.3V	1.8			V
	V _L	V _{IN} = 3.3V			0.4	
Over Temperature Prote	ction					
High Trip level	T _{HI}			175		°C
Hysteresis	T _{HYST}			10		°C


Notes:


- (1) Low duty cycle pulse testing with Kelvin connections required.
- (2) Defined as the input to output differential at which the output voltage drops to 1% below the value measured at a differential of 0.7V.
- (3) Required to maintain regulation. Voltage set resistors R1 and R2 are usually utilized to meet this requirement. Adjustable versions only.
- (4) Guaranteed by design.
- (5) When V_{ADJ} exceeds this threshold, the "Sense Select" switch disconnects the internal feedback chain from the error amplifier and connects V_{ADJ} instead.


Pin Configurations

SC1566 3-PIN Versions					
Pin Function					
1 VIN					
2 GND					
3 VO					
TAB IS GND					

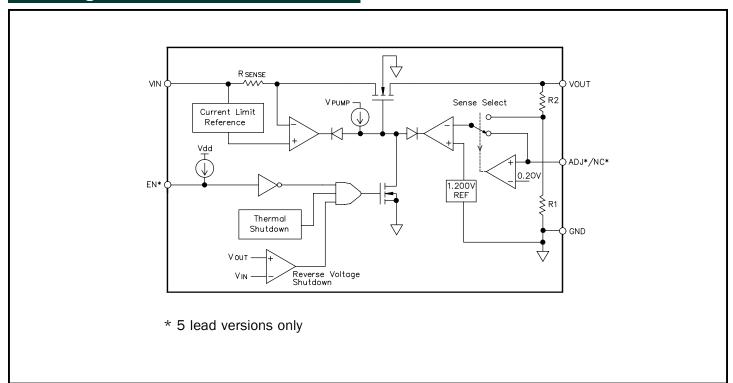
Ordering Information

Device ⁽¹⁾	Package
SC1566IM-X.X.TR	TO 202 2(3)
SC1566IM-X.XTRT ⁽⁶⁾	TO-263-3 ⁽³⁾
SC1566I5M-X.X.TR ⁽²⁾	TO 202 5(3)
SC1566I5MX.XTRT ⁽²⁾⁽⁶⁾	TO-263-5 ⁽³⁾
SC1566IT-X.X	TO 200 2(4)
SC1566IT-X.XT ⁽⁶⁾	TO-220-3 ⁽⁴⁾
SC1566l5T-X.X ⁽²⁾⁽⁵⁾	TO 200 5(4)
SC1566l5TX.XT ⁽²⁾⁽⁵⁾⁽⁶⁾	TO-220-5 ⁽⁴⁾
SC1566I5T-X.XSB ⁽²⁾⁽⁵⁾	TO 220 F(4)
SC1566I5TX.XSBT(2)(5)(6)	TO-220-5 ⁽⁴⁾

Notes:

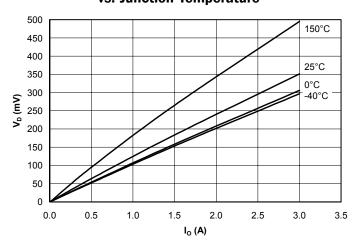
- (1) Where -X.X denotes voltage options. Available voltages are: 2.5V and 1.8V.
- (2) Output voltage can be adjusted using external resistors, see Pin Descriptions below.
- (3) Only available in tape and reel packaging. A reel contains 800 devices.
- (4) Only available in tube packaging. A tube contains 50 devices.
- (5) T-XX = Straight in-line; T-XX-SB = Single Bend.
- (6) Lead free product. This product is fully WEEE and RoHS compliant.

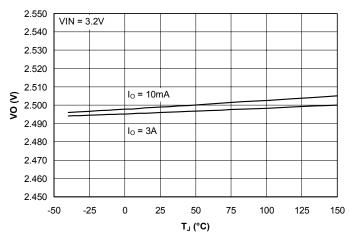
Note:


(1) 3-pin versions are fixed output voltage only.

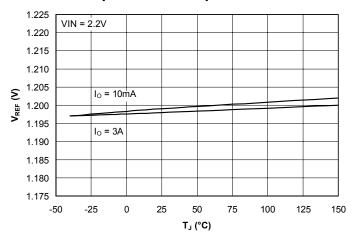
Pin Descriptions

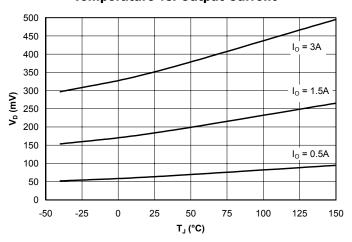
Pin Name	Pin Desciption
ADJ	This pin, when grounded, sets the output voltage to that set by the internal feedback resistors. If external feedback resistors are used, the output voltage will be (See Application Circuits on page 1):
	$VO = \frac{1.200 (R1 + R2)}{R2} Volts$
EN	Enable Input. Pulling this pin below 0.4V turns the regulator off, reducing the quiescent current to a fraction of its operating value. The device will be enabled if this pin is left open. Connect to VIN if not being used.
GND	Reference ground. Use the tab (electrically connected to GND) for heatsinking.
VIN	Input voltage. For regulation at full load, the input to this pin must be between (VO + $0.7V$) and $5.5V$. Minimum VIN = $2.2V$.
VO	This pin is the power output of the device.

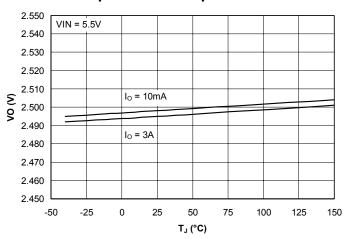

Block Diagram

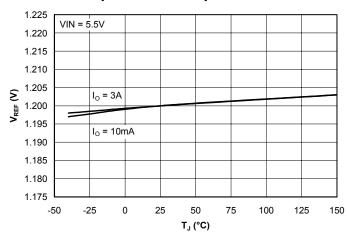


Typical Characteristics

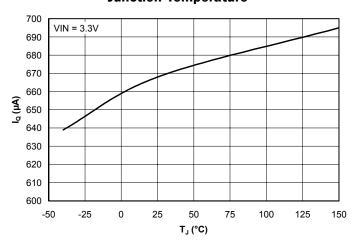

Dropout Voltage vs. Output Current vs. Junction Temperature


Output Voltage (2.5V) vs. Junction Temperature vs. Output Current


Reference Voltage vs. Junction Temperature vs. Output Current


Dropout Voltage vs. Junction Temperature vs. Output Current

Output Voltage (2.5V) vs. Junction Temperature vs. Output Current

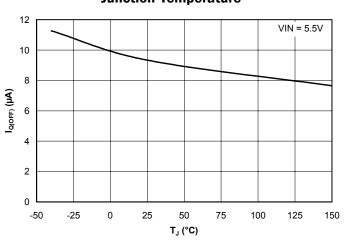

Reference Voltage vs. Junction Temperature vs. Output Current

Typical Characteristics (Cont.)

Quiescent Current vs. Junction Temperature

Applications Information

Introduction


The SC1566 is intended for applications such as graphics cards where high current capability and very low dropout voltage are required. It provides a very simple, low cost solution that uses very little pcb real estate and typically does not require a heatsink. Additional features include an enable pin to allow for a very low power consumption standby mode, and a fully adjustable output (5-pin versions).

Component Selection

Input capacitor: a $4.7\mu F$ or $10\mu F$ ceramic capacitor is recommended. This allows for the device being some distance from any bulk capacitance on the rail. Additionally, input droop due to load transients is reduced, improving load transient response. Additional capacitance may be added if required by the application.

Output capacitor: a minimum bulk capacitance of $2.2\mu F$, along with a $0.1\mu F$ ceramic decoupling capacitor is recommended. Increasing the bulk capacitance will improve the overall transient response. The use of multiple lower value ceramic capacitors in parallel to achieve the desired bulk capacitance will not cause stability issues. Although designed for use with ceramic output capacitors, the SC1566 is extremely tolerant of output capacitor ESR values and thus will also work comfortably with tantalum output capacitors. For reference, the phase-margin contour of Figure 1. can be used

Off-State Quiescent Current vs. Junction Temperature

to choose an appropriate output capacitor for a given stability requirement.

Noise immunity: in very electrically noisy environments, it is recommended that $0.1\mu F$ ceramic capacitors be placed from IN to GND and OUT to GND as close to the device pins as possible.

External voltage selection resistors (5-pin parts): the use of 1% resistors, and designing for a current flow \geq 10 $\mu\mu$ A is recommended to ensure a well regulated output (thus R2 \leq 120k Ω).

Thermal Considerations

The power dissipation in the SC1566 is approximately equal to the product of the output current and the input to output voltage differential:

$$P_D \approx (VIN - VOUT) \bullet I_O$$

The absolute worst-case dissipation is given by:

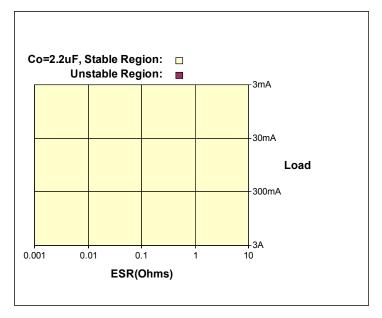
$$P_{D(MAX)} = (VIN_{(MAX)} - VOUT_{(MIN)}) \bullet I_{O(MAX)} + VIN_{(MAX)} \bullet I_{O(MAX)}$$

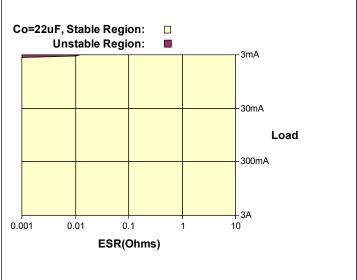
For a typical scenario, V_{IN} = 3.3V ± 5%, V_{OUT} = 2.8V and I_{O} = 2.5A, therefore:

$$V_{IN(MAX)}$$
 = 3.465V, $V_{OUT(MIN)}$ = 2.744V and $I_{Q(MAX)}$ = 1.75mA,

Thus
$$P_{D(MAX)} = 1.81W$$
.

Applications Information (Cont.)

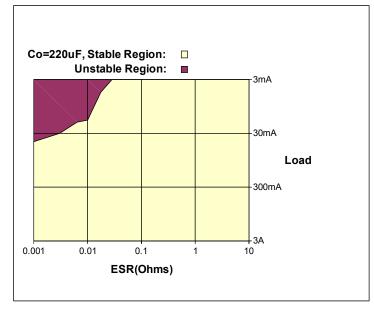
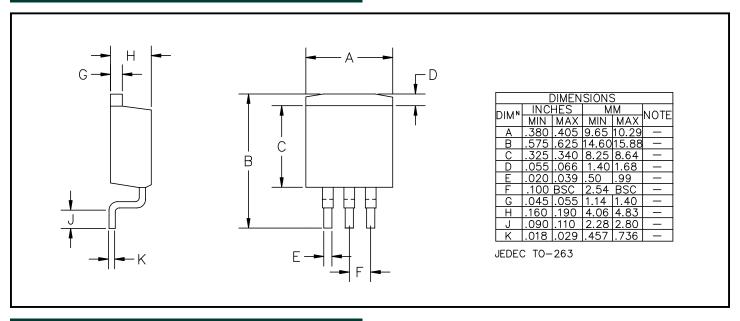

Using this figure, and assuming $T_{A(MAX)} = 85 \,^{\circ}\text{C}$, we can calculate the maximum thermal impedance allowable to maintain $T_{\perp} \leq 150 \,^{\circ}\text{C}$ (see page 7):

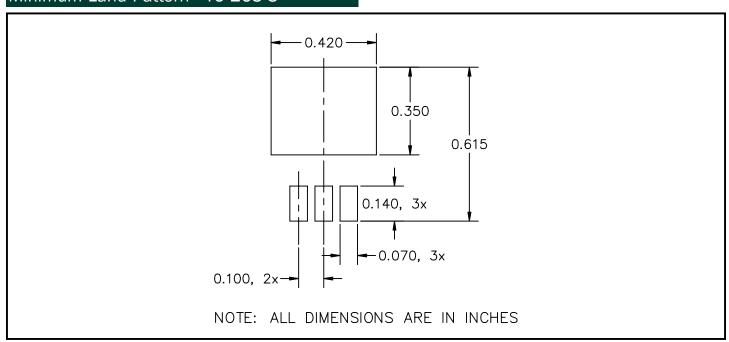

$$R_{TH(J-A)(MAX)} = \frac{\left(T_{J(MAX)} - T_{A(MAX)}\right)}{P_{D(MAX)}} = \frac{\left(150 - 85\right)}{1.81} = 36^{\circ}C / W$$

 $R_{\text{TH}(J-C)(\text{MAX})} = 3^{\circ}\text{C/W}$ and $R_{\text{TH}(C-S)} = 0^{\circ}\text{C/W}\text{,}$

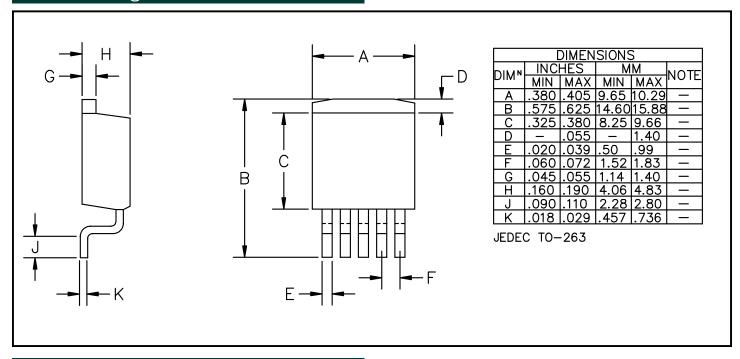
therefore $R_{TH(S-A)(MAX)} = 33^{\circ}C/W$

This should be achievable for the T0-263 package using pcb copper area to aid in conducting the heat away from the device, such as a large (~2 squ. inch) pad connected to the tab of the device. Internal ground/power planes and air flow will also assist in removing heat. For higher power dissipations it may be necessary to use a small heatsink and the T0-220 package.

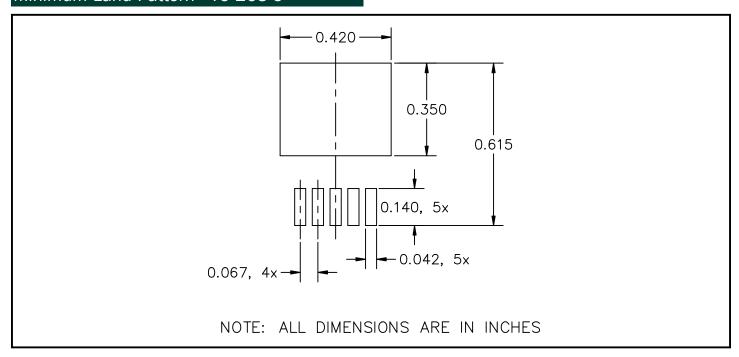




Figure 1. Phase-margin Contour Plot

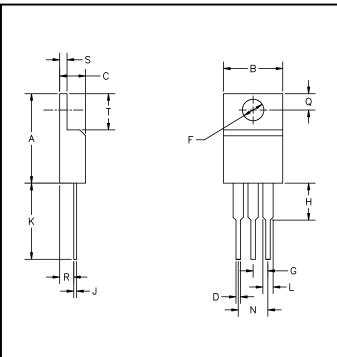
Outline Drawing - T0-263-3



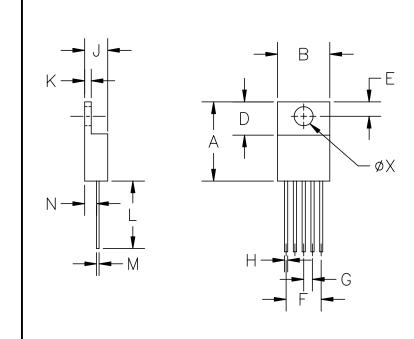
Minimum Land Pattern - TO-263-3



Outline Drawing - TO-263-5



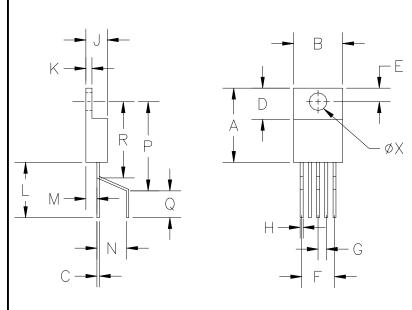
Minimum Land Pattern - TO-263-5


Outline Drawing - TO-220-3

DIMENSIONS						
DIM	INCHES		М	NOTE		
ואווט	MIN	MAX	MIN	MAX	NOTE	
Α	.560	.650	14.23	16.51		
В	.380	.420	9.66	10.66		
BCDFGIJ	.140	.190	3.56	4.82		
D	.020	.045	0.51	1.14		
F	.139	.161	3.54			
G	.090	.110	2.29	2.79		
Н	_	.250	_	6.35		
		.045	.31	1.14		
K	.500	.580	12.70			
L	.045	.070	1.15	1.77		
N	.190	.210	4.83	5.33		
Q	.100	.135	2.54	3.42		
Q R S	.080	.115	2.04	2.92		
S	.020	.055	.51	1.39		
T	.230	.270	5.85	6.85		

JEDEC TO-220

Outline Drawing - TO-220-5



DIMENSIONS						
DIM	INCHES		MM		NOTE	
DIM.	MIN	MAX	MIN	MAX	NOTE	
Α	.560	.650	14.22	16.51	_	
В	.380	.420	9.65	10.67		
D	.230	.260	5.84	6.60	_	
E	.100	.135	2.54	3.43	_	
F	.263	.273	6.68	6.94	_	
G	.062	.072	1.57	1.83	_	
Н		.040		1.02	_	
J	.140	.190	3.55	4.83	_	
K	.045	.055	1.14	1.40	_	
L	.540	.560	13.72	14.22	_	
М	.014	.022	.35	.56	_	
N	.080	.120	2.03	3.05	-	
ØΧ	.139	.161	3.53	4.09	_	

JEDEC TO-220

Outline Drawing - TO-220-5 (T-XX-SB Option)

- 3 PINS 1, 3 AND 5 ARE BENT.
- 2 PINS 2 AND 4 ARE STRAIGHT.
- CONTROLLING DIMENSION: INCHES.

DIMENICIONIC							
DIMENSIONS							
DIM	INCHES		M	NOTE			
DIIVI	MIN	MAX	MIN	MAX	INOIL		
Α	.560	.650	14.22	16.51	_		
В	.380	.420	9.65	10.67	_		
С	.014	.022	0.35	0.56	_		
B C D	.230	.260	5.84	6.60	_		
	.100	.135	2.54	3.43	_		
F	.263	.273	6.68	6.94	_		
G	.062	.072	1.57	1.83	_		
Н	.025	.040	.63	1.02	_		
J	.140	.190	3.55	4.83	_		
K	.045	.055	1.14	1.40	_		
L	.440	.460	11.17	11.68	_		
М	.080	.120	2.03	3.05	_		
N	.205	.255	5.21	5.72	_		
P	.745	.765	18.92	19.43			
Q	.155	.175	3.94	4.45	_		
R	.605	.625	15.37	15.88	_		
ØΧ	.139	.161	3.53	4.09	_		

JEDEC TO-220 (BODY ONLY)

Contact Information

Semtech Corporation Power Management Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805)498-2111 FAX (805)498-3804