imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs

Rev. 4 — 8 June 2010

Product data sheet

1. General description

The SC16C554B/554DB is a 4-channel Universal Asynchronous Receiver and Transmitter (QUART) used for serial data communications. Its principal function is to convert parallel data into serial data and vice versa. The UART can handle serial data rates up to 5 Mbit/s. It comes with an Intel (16 mode) or Motorola (68 mode) interface.

The SC16C554B/554DB is pin compatible with the ST16C554 and TL16C554 and it will power-up to be functionally equivalent to the 16C454. Programming of control registers enables the added features of the SC16C554B/554DB. Some of these added features are the 16-byte receive and transmit FIFOs, four receive trigger levels. The SC16C554B/554DB also provides DMA mode data transfers through FIFO trigger levels and the TXRDY and RXRDY signals. (TXRDY and RXRDY signals are not available in the HVQFN48 package.) On-board status registers provide the user with error indications, operational status, and modem interface control. System interrupts may be tailored to meet user requirements. An internal loopback capability allows on-board diagnostics.

The SC16C554B/554DB operates at 5 V, 3.3 V and 2.5 V, and the industrial temperature range, and is available in plastic PLCC68, LQFP64, LQFP80, and HVQFN48 packages. On the HVQFN48 package only, channel C has all the modem pins. Channels A and B have only RTSn and CTSn pins and channel D does not have any modem pin.

2. Features and benefits

- 4 channel UART
- 5 V, 3.3 V and 2.5 V operation
- Industrial temperature range (-40 °C to +85 °C)
- The SC16C554B is pin and software compatible with the industry-standard ST16C454/554, ST68C454/554, ST16C554, TL16C554
- The SC16C554DB is pin and software compatible with ST16C554D, and software compatible with ST16C454/554, ST16C554, TL16C554
- Up to 5 Mbit/s data rate at 5 V and 3.3 V, and 3 Mbit/s at 2.5 V
- 5 V tolerant on input only pins¹
- 16-byte transmit FIFO
- 16-byte receive FIFO with error flags
- Programmable auto-RTS and auto-CTS
 - ◆ In auto-CTS mode, CTS controls transmitter
 - ◆ In auto-RTS mode, RX FIFO contents and threshold control RTS

^{1.} For data bus pins D7 to D0, see Table 24 "Limiting values".

5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs

- Automatic hardware flow control (RTS/CTS)
- Software selectable baud rate generator
- Four selectable Receive FIFO interrupt trigger levels
- Standard modem interface
- Standard asynchronous error and framing bits (Start, Stop, and Parity Overrun Break)
- Transmit, Receive, Line Status, and Data Set interrupts independently controlled
- Fully programmable character formatting:
 - 5-bit, 6-bit, 7-bit, or 8-bit characters
 - Even, odd, or no-parity formats
 - ◆ 1, 1¹∨₂, or 2-stop bit
 - Baud generation (DC to 5 Mbit/s)
- False start-bit detection
- Complete status reporting capabilities
- S-state output TTL drive capabilities for bidirectional data bus and control bus
- Line break generation and detection
- Internal diagnostic capabilities:
 - Loopback controls for communications link fault isolation
- Prioritized interrupt system controls
- Modem control functions (CTS, RTS, DSR, DTR, RI, CD).

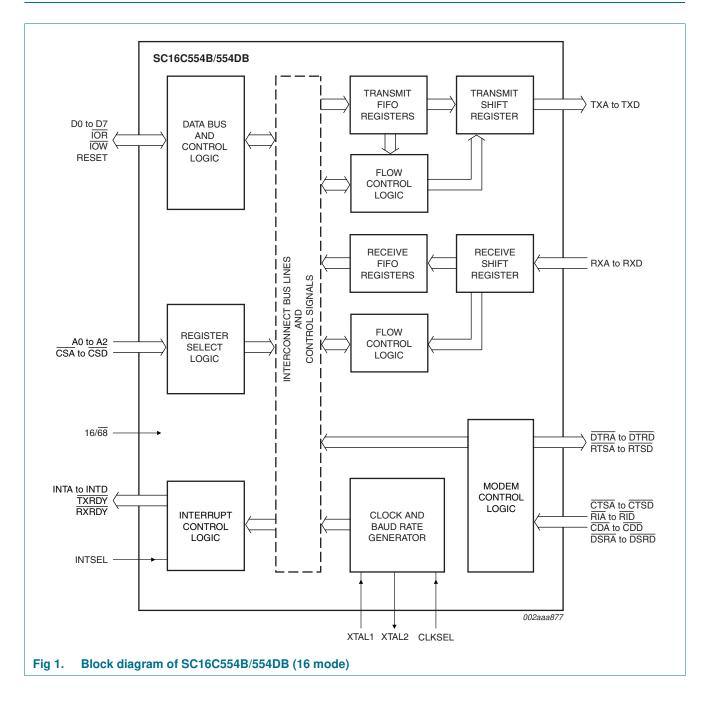
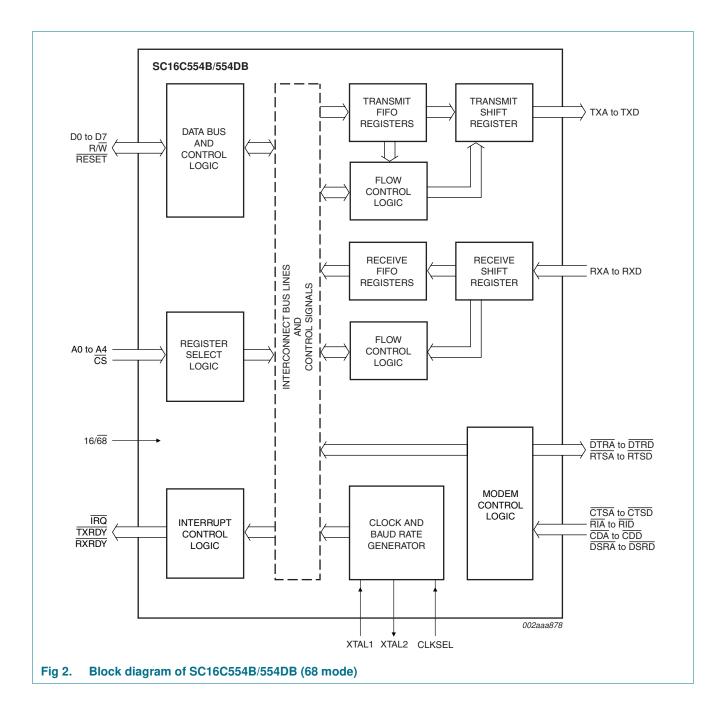

3. Ordering information

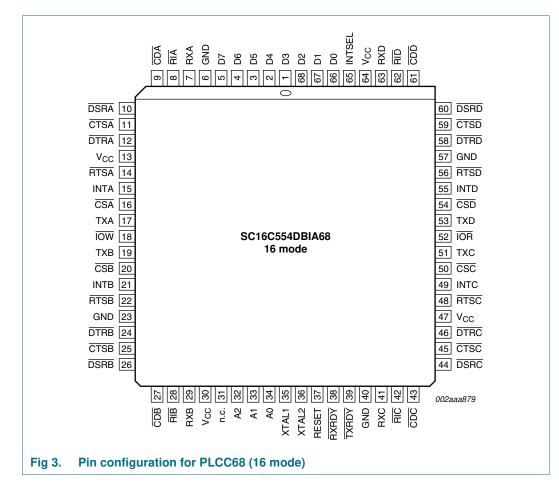
Table 1.Ordering information


Type number	Package							
	Name	Description	Version					
SC16C554BIB64	LQFP64	plastic low profile quad flat package; 64 leads; body 10 \times 10 \times 1.4 mm	SOT314-2					
SC16C554BIB80	LQFP80	plastic low profile quad flat package; 80 leads; body 12 \times 12 \times 1.4 mm	SOT315-1					
SC16C554BIBM	LQFP64	plastic low profile quad flat package; 64 leads; body $7\times7\times1.4$ mm	SOT414-1					
SC16C554BIBS	HVQFN48	plastic thermal enhanced very thin quad flat package; no leads; 48 terminals; body $6 \times 6 \times 0.85$ mm	SOT778-3					
SC16C554DBIA68	PLCC68	plastic leaded chip carrier; 68 leads	SOT188-2					
SC16C554DBIB64	LQFP64	plastic low profile quad flat package; 64 leads; body 10 \times 10 \times 1.4 mm	SOT314-2					

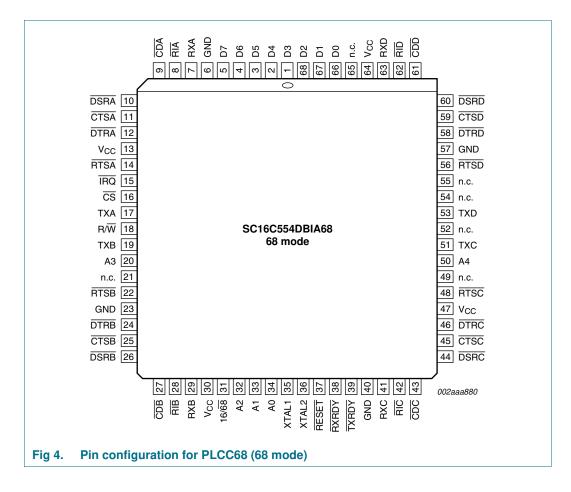
5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs

4. Block diagram

SC16C554B/554DB

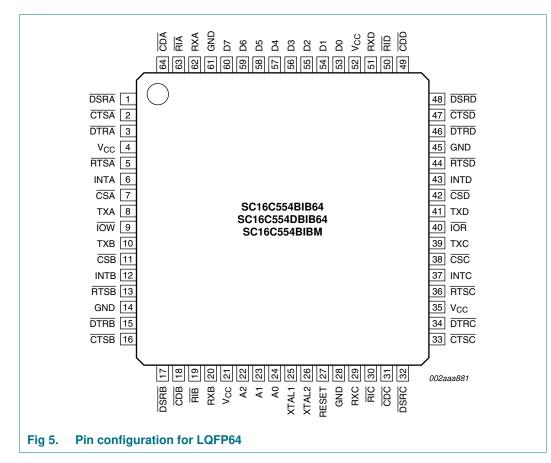


5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs

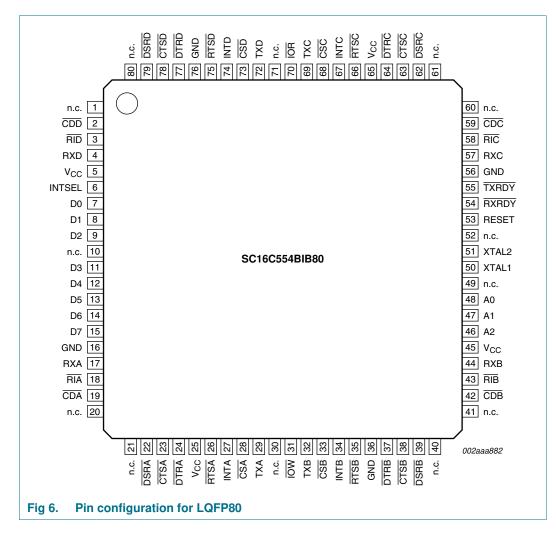

5. Pinning information

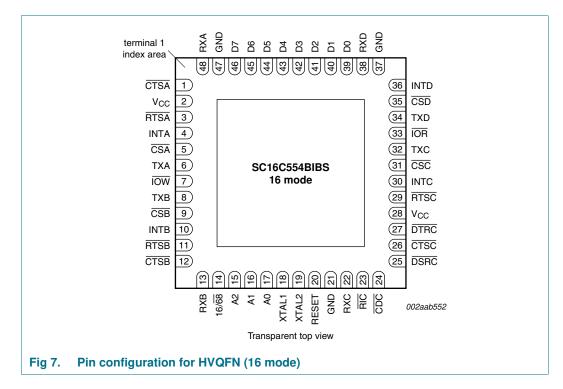
5.1 Pinning

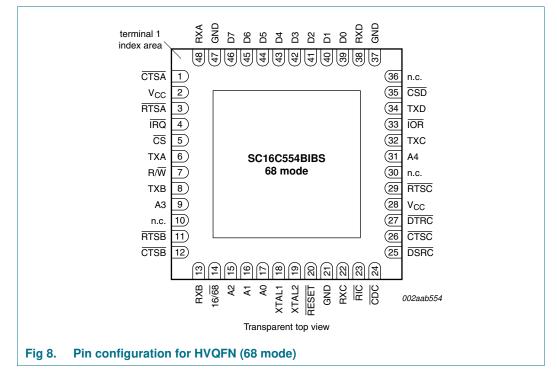
5.1.1 PLCC68



5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs


SC16C554B_554DB
Product data sheet


5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs


5.1.3 LQFP80

5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs

5.1.4 HVQFN48

5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs

5.2 Pin description

Table 2.	Pin c	Pin description					
Symbol	F	Pin				Туре	Description
	F	PLCC68	LQFP64	LQFP80	HVQFN48		
16/68	3	31	-	-	14	1	16/68 Interface type select (input with internal pull-up). This input provides the 16 (Intel) or 68 (Motorola) bus interface type select. The functions of IOR, IOW, INTA to INTD, and CSA to CSD are re-assigned with the logic state of this pin. When this pin is a logic 1, the 16 mode interface (16C554) is selected. When this pin is a logic 0, the 68 mode interface (68C554) is selected. When this pin is a logic 0, IOW is re-assigned to R/W, RESET is re-assigned to RESET, IOR is not used, and INTA to INTD are connected in a wire-OR configuration. The wire-OR outputs are connected internally to the open-drain IRQ signal output. This pin is not available on 64-pin packages which operate in the 16 mode only.
A0	3	34	24	48	17	Ι	Address 0 select bit. Internal registers address selection in 16 and 68 modes.
A1	3	33	23	47	16	I	Address 1 select bit. Internal registers address selection in 16 and 68 modes.
A2	Э	32	22	46	15	I	Address 2 select bit. Internal registers address selection in 16 and 68 modes.
A3	2	20	-	-	9	l	Address 3 to Address 4 select bits. When the 68
A4	5	50	-	-	31	I	mode is selected, these pins are used to address or select individual UARTs (providing CS is a logic 0). In the 16 mode, these pins are re-assigned as chip selects, see CSB and CSC.
CDA	g)	64	19	-		Carrier Detect (active LOW). These inputs are
CDB	2	27	18	42	-	I	 associated with individual UART channels A through D. A logic 0 on this pin indicates that a carrier has been
CDC	4	13	31	59	24	I	detected by the modem for that channel.
CDD	6	61	49	2	-	I	
CS	1	16	-	-	5	I	Chip Select (active LOW). In the 68 mode, this pin functions as a multiple channel chip enable. In this case, all four UARTs (A to D) are enabled when the CS pin is a logic 0. An individual UART channel is selected by the data contents of address bits A3 to A4. when the 16 mode is selected (68-pin devices), this pin functions as CSA (see definition under CSA, CSB).
CSA	1	16	7	28	5	I	Chip Select A, B, C, D (active LOW). This function is
CSB	2	20	11	33	9	I	associated with the 16 mode only, and for individual
CSC	5	50	38	68	31	1	- channels 'A' through 'D'. When in 16 mode, these pins enable data transfers between the user CPU and the
CSD	5	54	42	73	35	I	SC16C554B/554DB for the channel(s) addressed. Individual UART sections (A, B, C, D) are addressed by providing a logic 0 on the respective CSA to CSD pin. When the 68 mode is selected, the functions of these pins are re-assigned. 68 mode functions are described under their respective name/pin headings.

5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs

Table 2. Pin description ... continued Symbol Pin Description Туре PLCC68 LQFP64 LQFP80 HVQFN48 CTSA 2 Clear to Send (active LOW). These inputs are 11 23 1 L associated with individual UART channels A to D. A CTSB 25 16 38 12 T logic 0 on the CTSn pin indicates the modem or data CTSC 45 33 63 26 L set is ready to accept transmit data from the SC16C554B/554DB. Status can be tested by reading CTSD 59 47 78 L _ MSR[4]. This pin only affects the transmit or receive operations when auto-CTS function is enabled via MCR[5] for hardware flow control operation. D0 66 53 7 39 I/O Data bus (bidirectional). These pins are the 8-bit. 3-state data bus for transferring information to or from D1 67 54 8 40 I/O the controlling CPU. D0 is the least significant bit and D2 68 55 9 41 I/O the first data bit in a transmit or receive serial data D3 1 56 11 42 I/O stream. D4 2 12 43 I/O 57 D5 3 58 13 44 I/O D6 4 59 14 45 I/O D7 5 15 60 46 I/O DSRA 10 1 22 L Data Set Ready (active LOW). These inputs are _ associated with individual UART channels. A through DSRB 26 17 39 L _ D. A logic 0 on this pin indicates the modem or data set DSRC 44 32 62 25 I is powered-on and is ready for data exchange with the DSRD 60 48 79 UART. This pin has no effect on the UART's transmit or L _ receive operation. DTRA 12 3 24 0 Data Terminal Ready (active LOW). These outputs are associated with individual UART channels, A DTRB 24 15 37 0 _ through D. A logic 0 on this pin indicates that the DTRC 46 34 64 27 0 SC16C554B/554DB is powered-on and ready. This pin can be controlled via the Modem Control Register. DTRD 58 46 77 0 Writing a logic 1 to MCR[0] will set the DTRn output to logic 0, enabling the modem. This pin will be a logic 1 after writing a logic 0 to MCR[0], or after a reset. This pin has no effect on the UART's transmit or receive operation. GND Signal and power ground. 6, 23, 14, 28, 16, 36, 21, 37, I 40, 57 45, 61 56,76 47<mark>[1]</mark> 15 6 27 4 Interrupt A, B, C, D (active HIGH). This function is INTA Ο associated with the 16 mode only. These pins provide 0 INTB 21 12 34 10 individual channel interrupts INTA to INTD. INTC 49 37 67 30 0 INTA to INTD are enabled when MCR[3] is set to a logic 1, interrupts are enabled in the Interrupt Enable INTD 55 43 74 36 Ο Register (IER), and when an interrupt condition exists. Interrupt conditions include: receiver errors, available receiver buffer data, transmit buffer empty, or when a modem status flag is detected. When the 68 mode is

modem status flag is detected. When the 68 mode is selected, the functions of these pins are re-assigned. 68 mode functions are described under their respective name/pin headings.

SC16C554B/554DB

5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs

Symbol	Pin				Туре	Description
	PLCC68	LQFP64	LQFP80	HVQFN48		
INTSEL	65	-	6	-	I	Interrupt Select (active HIGH, with internal pull-down). This function is associated with the 16 mode only. When the 16 mode is selected, this pin can be used in conjunction with MCR[3] to enable or disable the 3-state interrupts, INTA to INTD, or override MCR[3] and force continuous interrupts. Interrupt outputs are enabled continuously by making this pin a logic 1. Making this pin a logic 0 allows MCR[3] to control the 3-state interrupt output. In this mode, MCR[3] is set to a logic 1 to enable the 3-state outputs. This pin is disabled in the 68 mode. Due to pin limitations on the 64-pin packages, this pin is not available. To cover this limitation, the SC16C554DBIB64 version operates in the continuous interrupt enable mode by bonding this pin to V _{CC} internally. The SC16C554BIB64 operates with MCR[3] control by bonding this pin to GND. The INTSEL pin is not available on the HVQFN48 package.
IOR	52	40	70	33	I	Input/Output Read strobe (active LOW). This function is associated with the 16 mode only. A logic 0 transition on this pin will load the contents of an internal register defined by address bits A0 to A2 onto the SC16C554B/554DB data bus (D0 to D7) for access by external CPU. This pin is disabled in the 68 mode.
IOW	18	9	31	7	1	Input/Output Write strobe (active LOW). This function is associated with the 16 mode only. A logic 0 transition on this pin will transfer the contents of the data bus (D0 to D7) from the external CPU to an internal register that is defined by address bits A0 to A2. When the 68 mode is selected, this pin functions as R/\overline{W} (see definition under R/\overline{W}).
ĪRQ	15	-	-	4	0	Interrupt Request or Interrupt 'A'. This function is associated with the 68 mode only. In the 68 mode, interrupts from UART channels A to D are wire-ORed internally to function as a single IRQ interrupt. This pin transitions to a logic 0 (if enabled by the Interrupt Enable Register) whenever a UART channel(s) requires service. Individual channel interrupt status can be determined by addressing each channel through its associated internal register, using \overline{CS} and A3 to A4. In the 68 mode, and external pull-up resistor must be connected between this pin and V _{CC} . The function of this pin changes to INTA when operating in the 16 mode (see definition under INTA).
n.c.	21, 49, 52, 54, 55, 65	-	1, 10, 20, 21, 30, 40, 41, 49, 52, 60, 61, 71, 80	-	-	not connected

Table 2. Pin description ... continued

SC16C554B_554DB Product data sheet

5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs

Table 2.	Pin descriptioncontinued							
Symbol	Pin				Туре	Description		
	PLCC68	LQFP64	LQFP80	HVQFN48				
RESET (RESET)	37	27	53	20	1	Reset. In the 16 mode, a logic 1 on this pin will reset the internal registers and all the outputs. The UART transmitter output and the receiver input will be disabled during reset time. (See <u>Section 7.10</u> <u>"SC16C554B/554DB external reset conditions"</u> for initialization details.) When 16/68 is a logic 0 (68 mode), this pin functions similarly, bus as an inverted reset interface signal, RESET.		
RIA	8	63	18	-	I	Ring Indicator (active LOW). These inputs are		
RIB	28	19	43	-	I	associated with individual UART channels, A to D. A logic 0 on this pin indicates the modem has received a		
RIC	42	30	58	23	I	ringing signal from the telephone line. A logic 1		
RID	62	50	3	-	I	transition on this input pin will generate an interrupt.		
RTSA	14	5	26	3	0	Request to Send (active LOW). These outputs are		
RTSB	22	13	35	11	0	associated with individual UART channels, A to D. A logic 0 on the RTSn pin indicates the transmitter has		
RTSC	48	36	66	29	0	data ready and waiting to send. Writing a logic 1 in the		
RTSD	56	44	75	-	0	Modem Control Register MCR[1] will set this pin to a logic 0, indicating data is available. After a reset this pin will be set to a logic 1. This pin only affects the transmit and receive operations when auto-RTS function is enabled via MCR[5] for hardware flow control operation.		
R/W	18	-	-	7	I	Read/Write strobe. This function is associated with the 68 mode only. This pin provides the combined functions for Read or Write strobes.		
						Logic 1 = Read from UART register selected by \overline{CS} and A0 to A4.		
						Logic 0 = Write to UART register selected by \overline{CS} and A0 to A4.		
RXA	7	62	17	48		Receive data input RXA to RXD. These inputs are		
RXB	29	20	44	13	I	associated with individual serial channel data to the SC16C554B/554DB. The RXn signal will be a logic 1		
RXC	41	29	57	22	I	during reset, idle (no data), or when the transmitter is		
RXD	63	51	4	38	I	disabled. During the local Loopback mode, the RXn input pin is disabled and TX data is connected to the UART RX input internally.		
RXRDY	38	-	54	-	0	Receive Ready (active LOW). RXRDY contains the wire-ORed status of all four receive channel FIFOs, RXRDYA to RXRDYD. A logic 0 indicates receive data ready status, that is, the RHR is full, or the FIFO has one or more RX characters available for unloading. This pin goes to a logic 1 when the FIFO/RHR is empty, or when there are no more characters available in either the FIFO or RHR. Individual channel RX status is read by examining individual internal registers via CS and A0 to A4 pin functions. The RXRDY pin is not available on the HVQFN48 package.		

Table 2. Pin description ...continued

SC16C554B/554DB

5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs

Table 2.	Pir	n descripti	oncontin	ued			
Symbol		Pin				Туре	Description
		PLCC68	LQFP64	LQFP80	HVQFN48		
ТХА		17	8	29	6	0	Transmit data A, B, C, D. These outputs are
ТХВ		19	10	32	8	0	associated with individual serial transmit channel data from the SC16C554B/554DB. The TX signal will be a
TXC		51	39	69	32	0	logic 1 during reset, idle (no data), or when the
TXD		53	41	72	34	0	transmitter is disabled. During the local Loopback mode, the TXn output pin is disabled and TX data is internally connected to the UART RX input.
TXRDY		39	-	55	-	0	Transmit Ready (active LOW). TXRDY contains the wire-ORed status of all four transmit channel FIFOs, TXRDYA to TXRDYD. A logic 0 indicates a buffer ready status, that is, at least one location is empty and available in one of the TX channels (A to D). This pin goes to a logic 1 when all four channels have no more empty locations in the TX FIFO or THR. Individual channel TX status can be read by examining individual internal registers via CS and A0 to A4 pin functions. The TXRDY pin is not available on the HVQFN48 package.
V _{CC}		13, 30, 47, 64	4, 21, 35, 52	5, 25, 45, 65	2, 28	I	Power supply inputs.
XTAL1		35	25	50	18	I	Crystal or external clock input. Functions as a crystal input or as an external clock input. A crystal can be connected between this pin and XTAL2 to form an internal oscillator circuit (see Figure 13). Alternatively, an external clock can be connected to this pin to provide custom data rates. (See Section 6.6 "Programmable baud rate generator".)
XTAL2		36	26	51	19	0	Output of the crystal oscillator or buffered clock. (See also XTAL1.) Crystal oscillator output or buffered clock output.

[1] HVQFN48 package die supply ground is connected to both GND pins and exposed center pad. GND pins must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the PCB in the thermal pad region.

5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs

6. Functional description

The SC16C554B/554DB provides serial asynchronous receive data synchronization, parallel-to-serial and serial-to-parallel data conversions for both the transmitter and receiver sections. These functions are necessary for converting the serial data stream into parallel data that is required with digital data systems. Synchronization for the serial data stream is accomplished by adding start and stop bits to the transmit data to form a data character. Data integrity is insured by attaching a parity bit to the data character. The parity bit is checked by the receiver for any transmission bit errors. The electronic circuitry to provide all these functions is fairly complex, especially when manufactured on a single integrated silicon chip. The SC16C554B/554DB represents such an integration with greatly enhanced features. The SC16C554B/554DB is fabricated with an advanced CMOS process to achieve low drain power and high speed requirements.

The SC16C554B/554DB is an upward solution that provides 16 bytes of transmit and receive FIFO memory, instead of none in the 16C454. The SC16C554B/554DB is designed to work with high speed modems and shared network environments that require fast data processing time. Increased performance is realized in the SC16C554B/554DB by the larger transmit and receive FIFOs. This allows the external processor to handle more networking tasks within a given time. In addition, the four selectable levels of FIFO trigger interrupt is uniquely provided for maximum data throughput performance, especially when operating in a multi-channel environment. The combination of the above greatly reduces the bandwidth requirement of the external controlling CPU, increases performance, and reduces power consumption.

The SC16C554B/554DBAI68 combines the package interface modes of the 16C454/554 and 68C454/554 series on a single integrated chip. The 16 mode interface is designed to operate with the Intel-type of microprocessor bus, while the 68 mode is intended to operate with Motorola and other popular microprocessors. Following a reset, the SC16C554B/554DBAI68 is downward compatible with the 16C454/554 or the 68C454/554, dependent on the state of the interface mode selection pin, 16/68.

The SC16C554B/554DB is capable of operation to 1.5 Mbit/s with a 24 MHz crystal and up to 5 Mbit/s with an external clock input (at 3.3 V and 5 V; at 2.5 V the maximum speed is 3 Mbit/s).

The rich feature set of the SC16C554B/554DB is available through internal registers. Selectable receive FIFO trigger levels, selectable transmit and receive baud rates, and modem interface controls are all standard features. In the 16 mode, INTSEL and MCR[3] can be configured to provide a software controlled or continuous interrupt capability. Due to pin limitations of the 64-pin package, this feature is offered by two different LQFP64 packages. The SC16C554DB operates in the continuous interrupt enable mode by bonding INTSEL to V_{CC} internally. The SC16C554B operates in conjunction with MCR[3] by bonding INTSEL to GND internally.

6.1 Interface options

Two user interface modes are selectable for the PLCC68 package. These interface modes are designated as the '16 mode' and the '68 mode'. This nomenclature corresponds to the early 16C454/554 and 68C454/554 package interfaces respectively.

6.1.1 The 16 mode interface

The 16 mode configures the package interface pins for connection as a standard 16 series (Intel) device and operates similar to the standard CPU interface available on the 16C454/554. In the 16 mode (pin 16/ $\overline{68}$ = logic 1), each UART is selected with individual chip select (\overline{CSn}) pins, as shown in Table 3.

CSA	CSB	CSC	CSD	UART channel	
1	1	1	1	none	
0	1	1	1	A	
1	0	1	1	В	
1	1	0	1	С	
1	1	1	0	D	

Table 3. Serial port channel selection, 16 mode interface

6.1.2 The 68 mode interface

The 68 mode configures the package interface pins for connection with Motorola, and other popular microprocessor bus types. The interface operates similar to the 68C454/554. In this mode, the SC16C554B/554DB decodes two additional addresses, A3 to A4, to select one of the four UART ports. The A3 to A4 address decode function is used only when in the 68 mode (16/68 = logic 0), and is shown in Table 4.

Table 4. Serial port channel selection, 68 mode interface

	and the second second	, -	
CS	A4	A3	UART channel
1	n/a	n/a	none
0	0	0	А
0	0	1	В
0	1	0	С
0	1	1	D

Product data sheet

6.2 Internal registers

The SC16C554B/554DB provides 12 internal registers for monitoring and control. These registers are shown in <u>Table 5</u>. These registers function as data holding registers (THR/RHR), interrupt status and control registers (IER/ISR), a FIFO Control Register (FCR), line status and control registers (LCR/LSR), modem status and control registers (MCR/MSR), programmable data rate (clock) control registers (DLL/DLM), and a user accessible Scratchpad Register (SPR). Register functions are more fully described in the following paragraphs.

A2	A1	A 0	Read mode	Write mode				
General register set (THR/RHR, IER/ISR, MCR/MSR, FCR, LCR/LSR, SPR) ^[1]								
0	0	0	Receive Holding Register	Transmit Holding Register				
0	0	1	Interrupt Enable Register	Interrupt Enable Register				
0	1	0	Interrupt Status Register	FIFO Control Register				
0	1	1	Line Control Register	Line Control Register				
1	0	0	Modem Control Register	Modem Control Register				
1	0	1	Line Status Register	n/a				
1	1	0	Modem Status Register	n/a				
1	1	1	Scratchpad Register	Scratchpad Register				
Baud	Baud rate register set (DLL/DLM) ^[2]							
0	0	0	LSB of Divisor Latch	LSB of Divisor Latch				
0	0	1	MSB of Divisor Latch	MSB of Divisor Latch				

Table 5. Internal registers decoding

[1] These registers are accessible only when LCR[7] is a logic 0.

[2] These registers are accessible only when LCR[7] is a logic 1.

6.3 **FIFO** operation

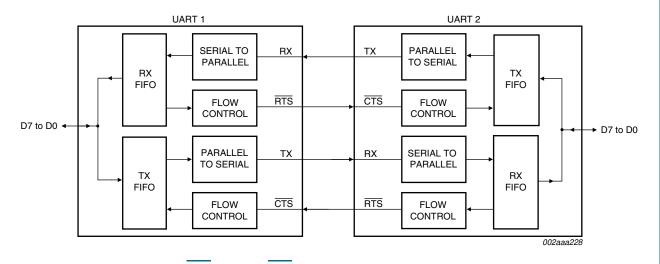

The 16 byte transmit and receive data FIFOs are enabled by the FIFO Control Register (FCR) bit 0. With SC16C554B devices, the user can set the receive trigger level, but not the transmit trigger level. The receiver FIFO section includes a time-out function to ensure data is delivered to the external CPU. An interrupt is generated whenever the Receive Holding Register (RHR) has not been read following the loading of a character or the receive trigger level has not been reached.

Table 6. Flow control mechanism

Selected trigger level (characters)	INTn pin activation	Negate RTS	Assert RTS
1	1	4	1
4	4	8	4
8	8	12	8
14	14	14	10

6.4 Autoflow control (see Figure 9)

Autoflow control is comprised of auto-CTS and auto-RTS. With auto-CTS, the CTS input must be active before the transmitter FIFO can emit data. With auto-RTS, RTS becomes active when the receiver needs more data and notifies the sending serial device. When RTS is connected to CTS, data transmission does not occur unless the receiver FIFO has space for the data; thus, overrun errors are eliminated using UART 1 and UART 2 from a SC16C554B/554DB with the autoflow control enabled. If not, overrun errors occur when the transmit data rate exceeds the receiver FIFO read latency.

Fig 9. Autoflow control (auto-RTS and auto-CTS) example

6.4.1 Auto-RTS (see Figure 9)

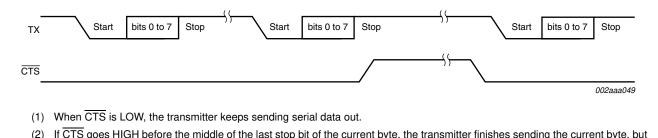
Auto-RTS data flow control originates in the receiver timing and control block (see block diagrams in Figure 1 and Figure 2) and is linked to the programmed receiver FIFO trigger level. When the receiver FIFO level reaches a trigger level of 1, 4, or 8 (see Figure 11), RTS is de-asserted. With trigger levels of 1, 4, and 8, the sending UART may send an additional byte after the trigger level is reached (assuming the sending UART has another byte to send) because it may not recognize the de-assertion of RTS until after it has begun sending the additional byte. RTS is automatically reasserted once the RX FIFO is emptied by reading the receiver buffer register. When the trigger level is 14 (see Figure 12), RTS is de-asserted after the first data bit of the 16th character is present on the RX line. RTS is reasserted when the RX FIFO has at least one available byte space.

Remark: Auto-RTS is not supported in channel D of the HVQFN48 package, therefore MCR[5] of channel D should not be written.

6.4.2 Auto-CTS (see Figure 9)

The transmitter circuitry checks CTS before sending the next data byte. When CTS is active, it sends the next byte. To stop the transmitter from sending the following byte, CTS must be released before the middle of the last stop bit that is currently being sent (see Figure 10). The auto-CTS function reduces interrupts to the host system. When flow control is enabled, CTS level changes do not trigger host interrupts because the device automatically controls its own transmitter. Without auto-CTS, the transmitter sends any data present in the transmit FIFO and a receiver overrun error may result.

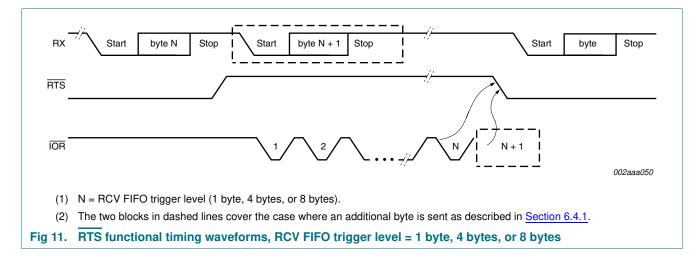
SC16C554B_554DB
Product data shee


Remark: Auto-CTS is not supported in channel D of the HVQFN48 package, therefore MCR[5] of channel D should not be written.

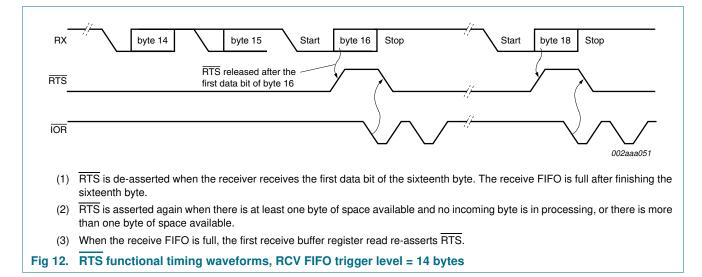
6.4.3 Enabling autoflow control and auto-CTS

Autoflow control is enabled by setting MCR[5] and MCR[1].

Table 7.	Enabling autoflow cont	rol and auto-CTS
MCR[5]	MCR[1]	Selection
1	1	auto $\overline{\text{RTS}}$ and $\overline{\text{CTS}}$
1	0	auto CTS
0	Х	disable


6.4.4 Auto-CTS and auto-RTS functional timing

- (2) If CTS goes HIGH before the middle of the last stop bit of the current byte, the transmitter finishes sending the current byte, but is does not send the next byte.
- (3) When CTS goes from HIGH to LOW, the transmitter begins sending data again.


Fig 10. CTS functional timing waveforms

The receiver FIFO trigger level can be set to 1 byte, 4 bytes, 8 bytes, or 14 bytes. These are described in Figure 11 and Figure 12.

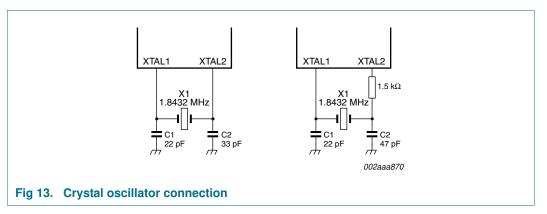
SC16C554B/554DB

5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs

6.5 Hardware/software and time-out interrupts

Following a reset, if the transmitter interrupt is enabled, the SC16C554B/554DB will issue an interrupt to indicate that the Transmit Holding Register is empty. This interrupt must be serviced prior to continuing operations. The LSR register provides the current singular highest priority interrupt only. Only after servicing the higher pending interrupt will the lower priority interrupt(s) be reflected in the status register. Servicing the interrupt without investigating further interrupt conditions can result in data errors.

When two interrupt conditions have the same priority, it is important to service these interrupts correctly. Receive Data Ready and Receive Time-Out have the same interrupt priority (when enabled by IER[0]). The receiver issues an interrupt after the number of characters have reached the programmed trigger level. In this case, the SC16C554B/554DB FIFO may hold more characters than the programmed trigger level. Following the removal of a data byte, the user should re-check LSR[0] for additional characters. A Receive Time-Out will not occur if the receive FIFO is empty. The time-out counter is reset at the center of each stop bit received or each time the Receive Holding Register (RHR) is read. The actual time-out value is 4 character time.


In the 16 mode for the PLCC68 package, the system/board designer can optionally provide software controlled 3-state interrupt operation. This is accomplished by INTSEL and MCR[3]. When INTSEL interface pin is left open or made a logic 0, MCR[3] controls the 3-state interrupt outputs, INTA to INTD. When INTSEL is a logic 1, MCR[3] has no effect on the INTA to INTD outputs, and the package operates with interrupt outputs enabled continuously.

6.6 Programmable baud rate generator

The SC16C554B/554DB supports high speed modem technologies that have increased input data rates by employing data compression schemes. For example, a 33.6 kbit/s modem that employs data compression may require a 115.2 kbit/s input data rate. A 128.0 kbit/s ISDN modem that supports data compression may need an input data rate of 460.8 kbit/s.

5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs

A single baud rate generator is provided for the transmitter and receiver, allowing independent TX/RX channel control. The programmable Baud Rate Generator is capable of accepting an input clock up to 80 MHz (for 3.3 V and 5 V operation), as required for supporting a 5 Mbit/s data rate. The SC16C554B/554DB can be configured for internal or external clock operation. For internal clock oscillator operation, an industry standard microprocessor crystal (parallel resonant/22 pF to 33 pF load) is connected externally between the XTAL1 and XTAL2 pins (see Figure 13). Alternatively, an external clock can be connected to the XTAL1 pin to clock the internal baud rate generator for standard or custom rates (see Table 8).

Programming the Baud Rate Generator registers DLM (MSB) and DLL (LSB) provides a user capability for selecting the desired final baud rate.

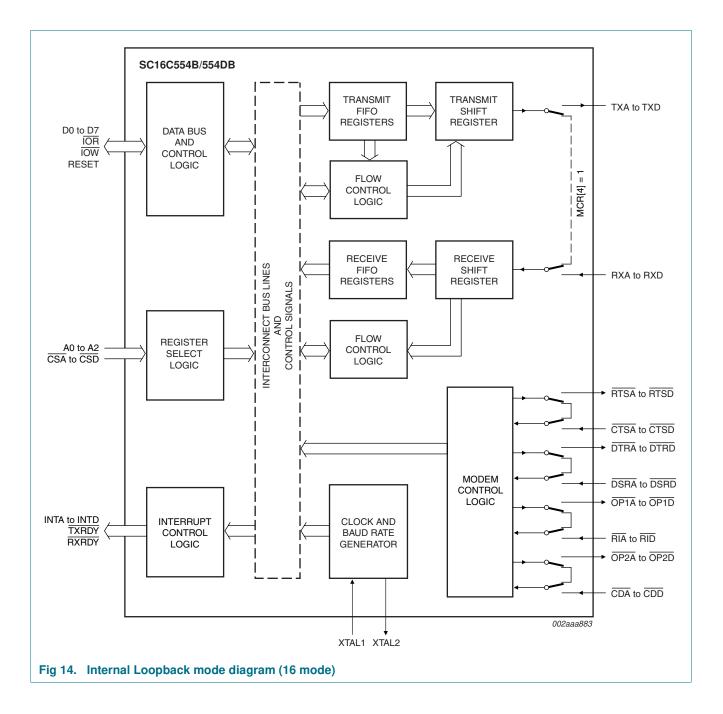
Output baud rate	User 16× clo	ck divisor	DLM	DLL	
(bit/s)	Decimal	Hexadecimal	program value (hex)	program value (hex)	
200	2304	900	09	00	
1200	384	180	01	80	
2400	192	C0	00	C0	
4800	96	60	00	60	
9600	48	30	00	30	
19.2 k	24	18	00	18	
38.4 k	12	0C	00	0C	
76.8 k	6	06	00	06	
153.6 k	3	03	00	03	
230.4 k	2	02	00	02	
460.8 k	1	01	00	01	

Table 8. Baud rate generator programming table using a 7.3728 MHz clock

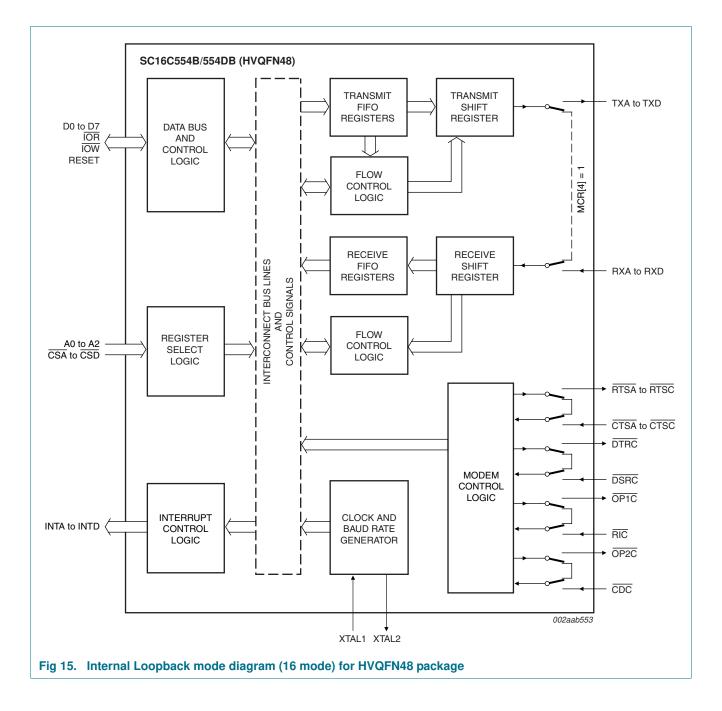
Product data sheet

6.7 DMA operation

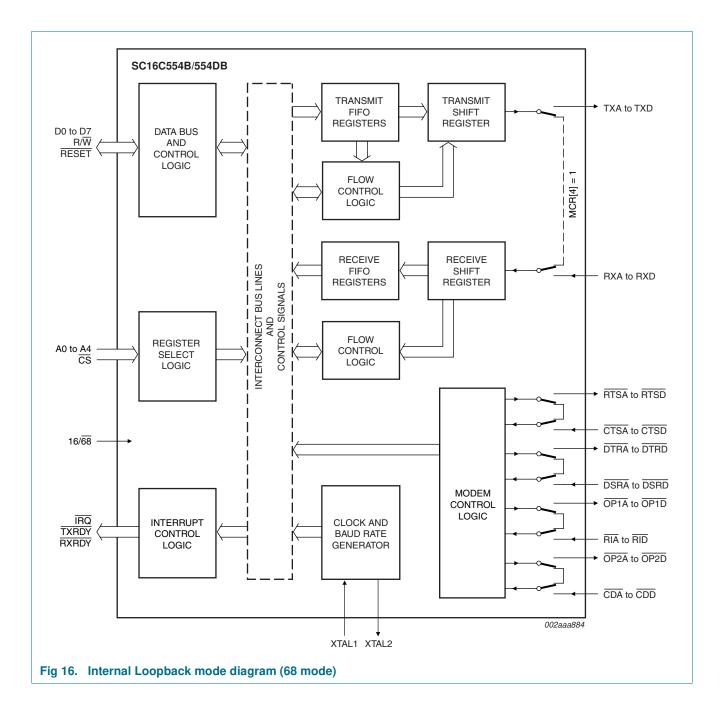
The SC16C554B/554DB FIFO trigger level provides additional flexibility to the user for block mode operation. LSR[6:5] provide an indication when the transmitter is empty or has an empty location(s). The user can optionally operate the transmit and receive FIFOs in the DMA mode (FCR[3]). When the transmit and receive FIFOs are enabled and the DMA mode is de-activated (DMA Mode 0), the SC16C554B/554DB activates the interrupt output pin for each data transmit or receive operation. When DMA mode is activated (DMA Mode 1), the user takes the advantage of block mode operation by loading or unloading the FIFO in a block sequence determined by the preset trigger level. In this mode, the SC16C554B/554DB sets the interrupt output pin when the characters in the receive FIFOs are above the receive trigger level.


Remark: DMA operation is not supported in the HVQFN48 package.

6.8 Loopback mode


The internal loopback capability allows on-board diagnostics. In the Loopback mode, the normal modem interface pins are disconnected and reconfigured for loopback internally. MCR[3:0] register bits are used for controlling loopback diagnostic testing. In the Loopback mode, OP2 and OP1 in the MCR register (bits 3:2) control the modem RI and CD inputs, respectively. MCR signals RTS and DTR (bits 1:0) are used to control the modem CTS and DSR inputs, respectively. The transmitter output (TX) and the receiver input (RX) are disconnected from their associated interface pins, and instead are connected together internally (see Figure 14). The CTS, DSR, CD, and RI are disconnected from their normal modem control input pins, and instead are connected internally to RTS, DTR, OP2 and OP1. Loopback test data is entered into the Transmit Holding Register via the user data bus interface, D0 to D7. The transmit UART serializes the data and passes the serial data to the receive UART via the internal loopback connection. The receive UART converts the serial data back into parallel data that is then made available at the user data interface D0 to D7. The user optionally compares the received data to the initial transmitted data for verifying error-free operation of the UART TX/RX circuits.

In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational. However, the interrupts can only be read using lower four bits of the Modem Status Register (MSR[3:0]) instead of the four Modem Status Register bits 7:4. The interrupts are still controlled by the IER.


SC16C554B/554DB

SC16C554B/554DB

SC16C554B/554DB

