

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MOS FET

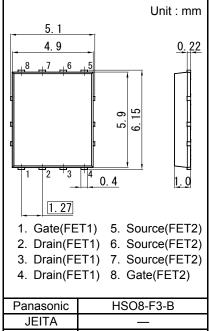
SC8673010L

SC8673010L

Asymmetric Dual Silicon N-ch Power MOS FET

For DC-DC Converter

■ Features


- Low Drain-source On-state Resistance : RDS(on) typ. FET1 : 10 m Ω (VGS = 4.5 V), FET2 : 2.5 m Ω (VGS = 4.5 V)
- Halogen-free / RoHS compliant

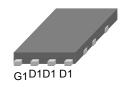
(EU RoHS / UL-94 V-0 / MSL : Level 1 compliant)

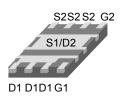
■ Marking Symbol : A1

■ Packaging

Embossed type (Thermo-compression sealing): 3 000 pcs / reel (standard)

Panasonic	HSO8-F3-B
JEITA	ı
Code	_


■ Absolute Maximum Ratings Ta = 25 °C


Parameter		Symbol	Ra	Unit		
		Syllibol	FET1	FET2	Offic	
Drain to Source Voltage		VDS	30	30	V	
Gate to Source	e Voltage	VGS	±20	±20	V	
Drain Current	Package limited	ID1	16	40		
Diain Cuneil	DC *1	ID2	10	23	Α	
Drain Current (Pulsed) *1 *2	IDp	48	120		
Total Power	Ta = 25 °C, DC ^{*1}	PD1	1.7	2.5	W	
Dissipation	Ta = 25 °C, DC ^{*3}	PD2	1	1		
	Tc = 25 °C	PD3	19	34		
Thermal	Channel to Ambient *1	Rth(ch-a)1	70	50		
Resistance	Channel to Ambient *3	Rth(ch-a)2	125	120	°C / W	
Resistance	Channel to Case	Rth(ch-c)	6.6	3.7	Ī	
Channel Temperature		Tch	150			
Operating ambient temperature		Topr	-40 t	o +85	°C	
Storage Temperature Range		Tstg	-55 t	o +150		
Avalanche Cur	rent (Single pulse) *4	IAR	8	20	Α	
Avalanche Ene	ergy (Single pulse) *4	EAR	8	46	mJ	

- Note *1 Device mounted on a glass-epoxy board in Figure 1.1 and 1.2
 - *2 Pulse test: Ensure that the channel temperature does not exceed 150 °C
 - *3 Device mounted on a glass-epoxy board in Figure 1.3
 - *4 VDD = 24 V, VGS = 10 to 0 V, L = 0.1 mH, Tch = 25 $^{\circ}$ C (initial)

Internal Circuit Pin Name 1. Gate(FET1) 5. Source(FET2) 2. Drain(FET1) 6. Source(FET2) 3. Drain(FET1) 7. Source(FET2) 4. Drain(FET1) 8. Gate(FET2)

Outline and Figures

FR4 Glass-Epoxy Board (25.4 mm \times 25.4 mm \times 0.8 mm)

Figure 1.1 (FET1) Figure 1.2 (FET2) Figure 1.3 (FET1, FET2)

MOS FET **SC8673010L**

■ Electrical Characteristics Ta = 25 $^{\circ}$ C \pm 3 $^{\circ}$ C

FET1

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Drain-source Breakdown Voltage	VDSS	ID = 1 mA, VGS = 0 V	30			V	
Zero Gate Voltage Drain Current	IDSS	VDS = 30 V, VGS = 0 V			10	μΑ	
Gate-source Leakage Current	IGSS	VGS = ±16 V, VDS = 0 V			±10	μΑ	
Gate-source Threshold Voltage	Vth	ID = 1.01 mA, VDS = 10 V	1		3	V	
Drain-source On-state Resistance	RDS(on)1	ID = 8 A, VGS = 10 V		7	10	O	
	RDS(on)2	ID = 8 A, VGS = 4.5 V		10	14	mΩ	
Input Capacitance	Ciss	VDS = 10 V, VGS = 0 V f = 1 MHz		780	1 092	pF	
Output Capacitance	Coss			160	224		
Reverse Transfer Capacitance	Crss	1 - 1 MHZ		61	98		
Turn-on Delay Time *1	td(on)	VDD = 15 V, VGS = 0 to 10 V		7		ns	
Rise Time *1	tr	ID = 8 A		3		115	
Turn-off Delay Time *1	td(off)	VDD = 15 V, VGS = 10 to 0 V		34		no	
Fall Time *1	tf	ID = 8 A		4		ns	
Total Gate Charge	Qg	VDD = 15 V, VGS = 0 to 4.5 V		6.3			
Gate to Source Charge	Qgs			2.5		nC	
Gate to Drain Charge	Qgd	ID = 8 A		2.1			
Gate resistance	rg	f = 5 MHz		1.2	3	Ω	

Body Diode Characteristic

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Diode Forward Voltage	VSD	IS = 8 A. VGS = 0 V		0.8	1.2	

Note: 1. Measuring methods are based on JAPANESE INDUSTRIAL STANDARD JIS C 7030 Measuring methods for transistors.

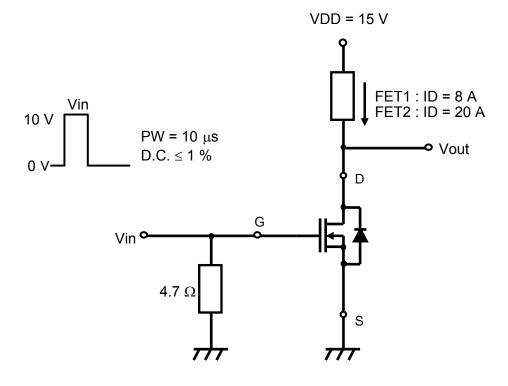
FET2

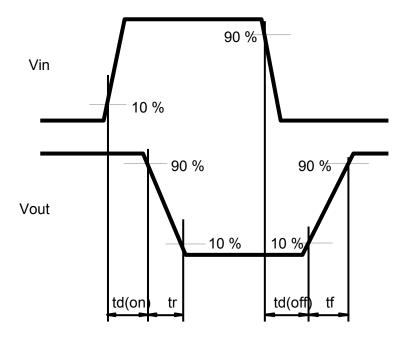
Symbol	Conditions	Min	Тур	Max	Unit
VDSS	ID = 1 mA, VGS = 0 V	30			V
IDSS	VDS = 30 V, VGS = 0 V			10	μΑ
IGSS	VGS = ± 16 V, VDS = 0 V			±10	μΑ
Vth	ID = 4.38 mA, VDS = 10 V	1.3		3	V
RDS(on)1	ID = 20 A, VGS = 10 V		1.9	2.5	0
RDS(on)2	ID = 20 A, VGS = 4.5 V		2.5	3.5	mΩ
Ciss	VDS = 10 V, VGS = 0 V		3 700	5 180	pF
Coss			430	602	
Crss	1 - 1 1011 12		310	496	
td(on)	VDD = 15 V, VGS = 0 to 10 V		13		no
tr	ID = 20 A		14		ns
td(off)	VDD = 15 V, VGS = 10 to 0 V		64		no
tf	ID = 20 A		9		ns
Qg	VDD = 15 V VCS = 0 to 4 5 V		28		
Qgs	•		9		nC
Qgd	1D - 20 A		10		
rg	f = 5 MHz		0.8	3	Ω
	VDSS IDSS IGSS Vth RDS(on)1 RDS(on)2 Ciss Coss Crss td(on) tr td(off) tf Qg Qgs Qgd	VDSS ID = 1 mA, VGS = 0 V IDSS VDS = 30 V, VGS = 0 V IGSS VGS = ±16 V, VDS = 0 V Vth ID = 4.38 mA, VDS = 10 V RDS(on)1 ID = 20 A, VGS = 10 V RDS(on)2 ID = 20 A, VGS = 4.5 V Ciss VDS = 10 V, VGS = 0 V f = 1 MHz td(on) VDD = 15 V, VGS = 0 to 10 V tr ID = 20 A td(off) VDD = 15 V, VGS = 10 to 0 V tf ID = 20 A Qg VDD = 15 V, VGS = 0 to 4.5 V Qgs Qgd Qgd VDD = 20 A VDD = 15 V, VGS = 0 to 4.5 V ID = 20 A ID = 20 A	VDSS ID = 1 mA, VGS = 0 V IDSS VDS = 30 V, VGS = 0 V IGSS VGS = ±16 V, VDS = 0 V Vth ID = 4.38 mA, VDS = 10 V RDS(on)1 ID = 20 A, VGS = 10 V RDS(on)2 ID = 20 A, VGS = 4.5 V Ciss VDS = 10 V, VGS = 0 V f = 1 MHz VDD = 15 V, VGS = 0 to 10 V tr ID = 20 A td(off) VDD = 15 V, VGS = 10 to 0 V tf ID = 20 A Qg QgS QgS Qgd VDD = 15 V, VGS = 0 to 4.5 V ID = 20 A	VDSS ID = 1 mA, VGS = 0 V 30 IDSS VDS = 30 V, VGS = 0 V 30 IGSS VGS = ±16 V, VDS = 0 V 1.3 RDS(on)1 ID = 20 A, VGS = 10 V 1.9 RDS(on)2 ID = 20 A, VGS = 4.5 V 2.5 Ciss VDS = 10 V, VGS = 0 V 3700 Coss F = 1 MHz 310 td(on) VDD = 15 V, VGS = 0 to 10 V 13 tr ID = 20 A 14 td(off) VDD = 15 V, VGS = 10 to 0 V 64 tf ID = 20 A 9 Qg VDD = 15 V, VGS = 0 to 4.5 V 28 Qgs ID = 20 A 9 Qgd VDD = 15 V, VGS = 0 to 4.5 V 9 Qgd ID = 20 A 10	VDSS ID = 1 mA, VGS = 0 V 30 IDSS VDS = 30 V, VGS = 0 V 10 IGSS VGS = ±16 V, VDS = 0 V ±10 Vth ID = 4.38 mA, VDS = 10 V 1.3 3 RDS(on)1 ID = 20 A, VGS = 10 V 1.9 2.5 RDS(on)2 ID = 20 A, VGS = 4.5 V 2.5 3.5 Ciss VDS = 10 V, VGS = 0 V 430 602 Tors Tors 310 496 td(on) VDD = 15 V, VGS = 0 to 10 V 13 14 td(off) VDD = 15 V, VGS = 10 to 0 V 64 14 tf ID = 20 A 9 9 Qg VDD = 15 V, VGS = 0 to 4.5 V 9 Qgs VDD = 15 V, VGS = 0 to 4.5 V 9 10

Body Diode Characteristic

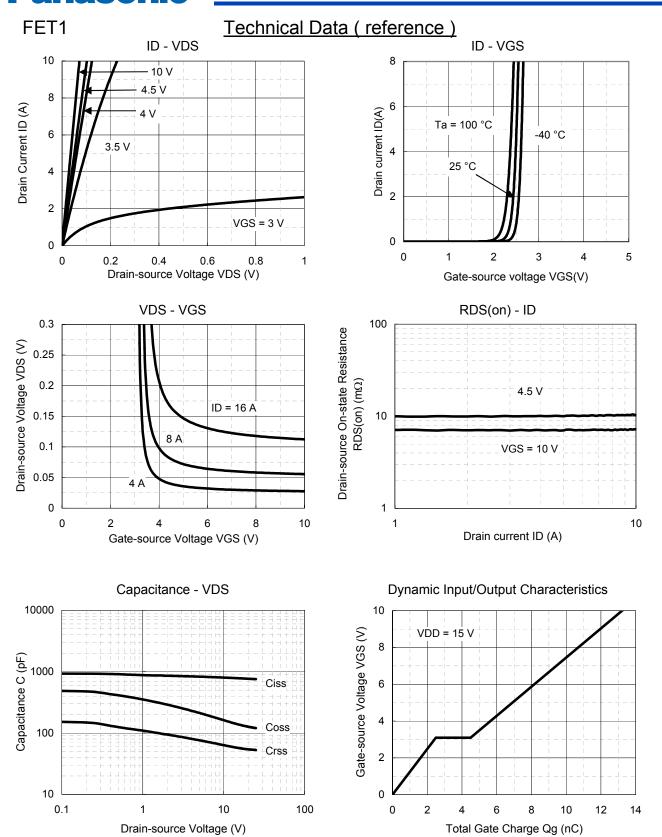
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Diode Forward Voltage	VSD	IS = 20 A, VGS = 0 V		0.9	1.2	V

Note: 1. Measuring methods are based on JAPANESE INDUSTRIAL STANDARD JIS C 7030 Measuring methods for transistors.


^{2. *1} Measurement circuit for Turn-on Delay Time / Rise Time / Turn-off Delay Time / Fall Time

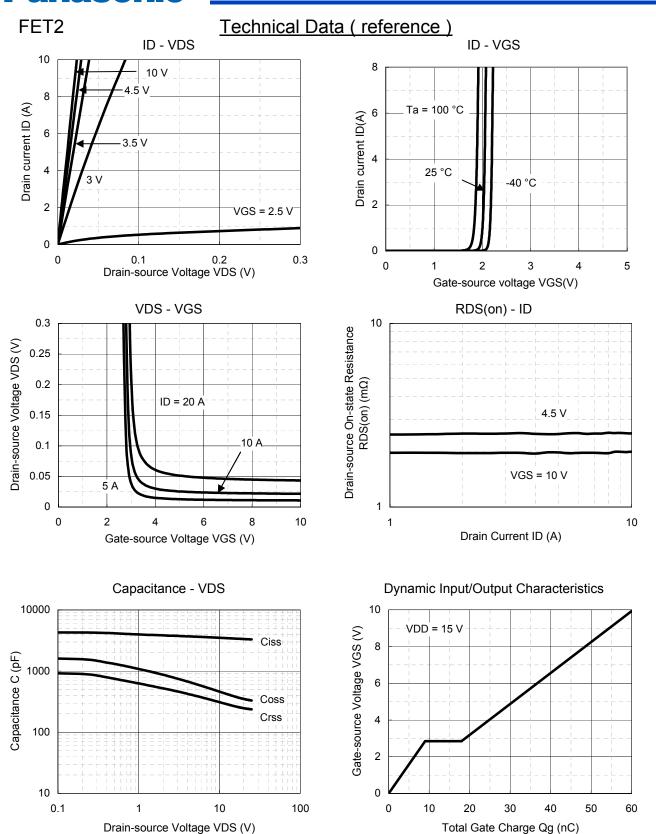

^{2. *1} Measurement circuit for Turn-on Delay Time / Rise Time / Turn-off Delay Time / Fall Time

MOS FET

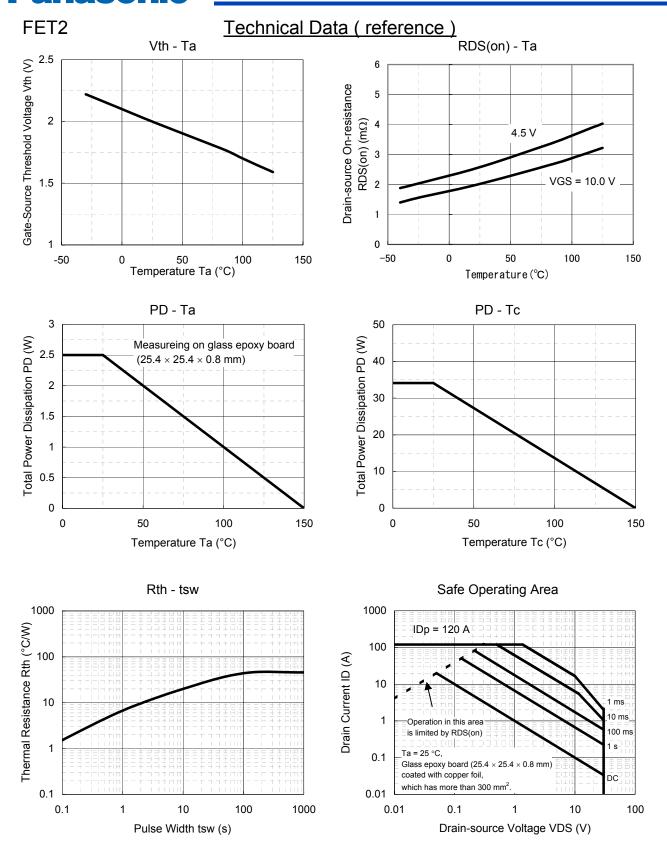

SC8673010L

*1 Measurement circuit for Turn-on Delay Time / Rise Time / Turn-off Delay Time / Fall Time

MOS FET **SC8673010L**



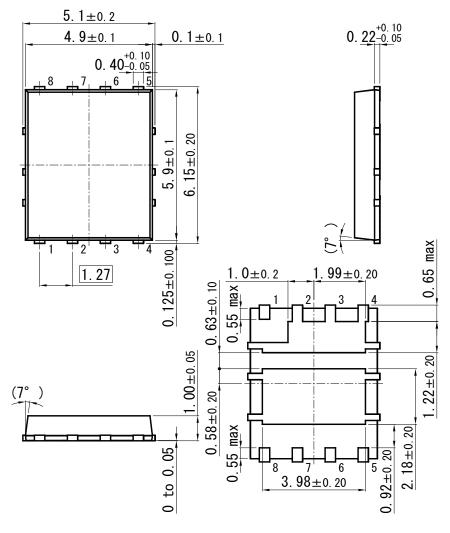
MOS FET **SC8673010L**


Panasonic

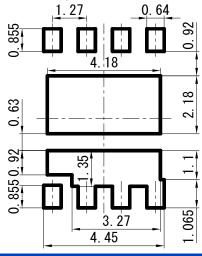
FET1 Technical Data (reference) RDS(on) - Ta Vth - Ta 25 Gate-source Threshold Voltage Vth (V) Drain-source On-resistance 20 2 RDS(on) (m\Omega) 15 4.5 V 10 1.5 VGS = 10.0 V 0 -50 150 -50 0 50 100 150 Temperature(°C) Temperature(°C) PD - Ta PD - Tc 3 25 Total Power Dissipation PD (W) Total Power Dissipation PD (W) 2.5 Measureing on glass epoxy board 20 (25.4 x 25.4 x 0.8 mm) 2 15 1.5 10 5 0.5 0 0 0 150 150 Temperature Ta (°C) Temperature Tc (°C) Safe Operating Area Rth - tsw 1000 100 Thermal Resistance Rth (°C/W) IDp = 48 A100 10 Drain Current ID (A) 10 Operation in this area is limited by RDS(on) 10 ms 100 ms 1 0.1 Ta = 25 °C, Glass epoxy board (25.4 ´ 25.4 coatedwith copper foil, which has more than 300 mm² 0.01 0.1 100 0.1 1 10 1000 0.01 10 100 Pulse Width tsw (s) Drain-source Voltage VDS (V)

MOS FET **SC8673010L**

MOS FET **SC8673010L**


Page 7 of 8

MOS FET


SC8673010L

HSO8-F3-B

Unit: mm

■ Land Pattern (Reference) (Unit : mm)

Page 8 of 8

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.

 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application, unless our company agrees to your using the products in this book for any special application.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20100202