: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Functional Description

The SCAN18374 consists of two sets of nine edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable pins are common to all flip-flops. Each set of the nine flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the

LOW-to-HIGH Clock (ACP or BCP) transition. With the Output Enable ($\overline{\mathrm{AOE}}_{1}$ or $\overline{\mathrm{BOE}}_{1}$) LOW, the contents of the nine flip-flops are available at the outputs. When the Output Enable is HIGH, the outputs go to the high impedance state. Operation of the Output Enable input does not affect the state of the flip-flops.

Logic Diagram

Block Diagrams

Note: BSR stands for Boundary Scan Register

Absolute Maximum Ratings(Note 1)		Recommended Operating Conditions
Supply Voltage (V_{CC})	-0.5 V to +7.0 V	
DC Input Diode Current (I_{IK})		Supply Voltage (V_{CC})
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA	SCAN Products $\quad 4.5 \mathrm{~V}$ to 5.5 V
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA	Input Voltage (V_{l}) V
DC Output Diode Current (lok)		Output Voltage (V_{0}) $\quad 0 \mathrm{~V}$ to V_{CC}
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA	Operating Temperature (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA	Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$, $125 \mathrm{mV} / \mathrm{ns}$
DC Output Voltage (V_{o})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\mathrm{V}_{1 \text { IN }}$ from 0.8 V to 2.0 V
DC Output Source/Sink Current (10)	$\pm 70 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
DC V_{CC} or Ground Current Per Output Pin	$\pm 70 \mathrm{~mA}$	Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power
Junction Temperature		supply, temperature, and outputtinput loading variables. Fairchild does not
SSOP	$+140^{\circ} \mathrm{C}$	recommend operation of SCAN circuits outside databook specifications.
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
ESD (Min)	2000 V	

DC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
VIL	Maximum LOW Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V} \text { OH }}$	Minimum HIGH Output Voltage (Note 2)	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 3.15 \\ & 4.15 \end{aligned}$	$\begin{aligned} & 3.15 \\ & 4.15 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{IOH}_{\mathrm{OH}}-32 \mathrm{~mA} \end{aligned}$
		$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$		V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$
V_{OL}	Maximum LOW Output Voltage (Note 2)	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 0.55 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{IOL}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
		$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 0.55 \\ & 0.55 \end{aligned}$		V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \hline \end{aligned}$
$\overline{\mathrm{IN}}$	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{IN}} \\ \text { TDI, TMS } \end{array}$	Maximum Input Leakage	5.5		2.8	3.6	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$
				-385	-385	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{GND}$
	Minimum Input Leakage	5.5		-160	-160	$\mu \mathrm{A}$	$\mathrm{V}_{1}=$ GND
IOLD	Minimum Dynamic Output Current (Note 3)	5.5		94	94	mA	$\mathrm{V}_{\text {OLD }}=0.8 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$				-40	-40	mA	$\mathrm{V}_{\text {OHD }}=2.0 \mathrm{~V}$ Min
Ioz	Maximum Output Leakage Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\text {IH }}$
los	Output Short Circuit Current	5.5		-100	-100	$\begin{gathered} \hline \mathrm{mA} \\ (\mathrm{~min}) \end{gathered}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
${ }_{\text {ICC }}$	Maximum Quiescent Supply Current	5.5		16.0	88	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\text { Open } \\ & \text { TDI, TMS }=\mathrm{V}_{\mathrm{CC}} \end{aligned}$
		5.5		750	820	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\text { Open } \\ & \text { TDI, TMS = GND } \end{aligned}$

DC Electrical Characteristics (Continued)

Symbol	Parameter		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
		(V)	Typ	Guaranteed Limits			
$\mathrm{I}_{\mathrm{CCt}}$	Maximum I ${ }_{C C}$ Per Input	5.5		2.0	2.0	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
		5.5		2.15	2.15	mA	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$ TDI/TMS Pin, Test One with the Other Floating

Noise Specifications

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units
			Typ	Gua	anteed Limits	
$\mathrm{V}_{\text {OLP }}$	Maximum HIGH Output Noise (Note 5)(Note 6)	5.0	1.0	1.5		V
$\overline{\mathrm{V} \text { OLV }}$	Minimum LOW Output Noise (Note 5)(Note 6)	5.0	-0.6	-1.2		V
$\mathrm{V}_{\text {OHP }}$	Maximum Overshoot (Note 4)(Note 6)	5.0	$\mathrm{V}_{\mathrm{OH}}+1.0$	$\mathrm{V}_{\mathrm{OH}}+1.5$		V
$\mathrm{V}_{\text {OHV }}$	Minimum V_{CC} Droop (Note 4)(Note 6)	5.0	$\mathrm{V}_{\mathrm{OH}^{-1.0}}$	$\mathrm{V}_{\mathrm{OH}^{-1.8}}$		V
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Dynamic Input Voltage Level (Note 4)(Note 7)	5.5	1.6	2.0	2.0	V
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Dynamic Input Voltage Level (Note 4)(Note 7)	5.5	1.4	0.8	0.8	V

Note 5: Maximum number of outputs that can switch simultaneously is $n .(n-1)$ outputs are switched LOW and one output held LOW.
Note 6: Maximum number of outputs that can switch simultaneously is n. ($n-1$) outputs are switched HIGH and one output held HIGH. Note 7: Maximum number of data inputs (n) switching. $(n-1)$ input switching 0 V to 3 V . Input under test switching 3 V to threshold ($\mathrm{V}_{\text {ILD }}$).

AC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V) (Note 8)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to Q	5.0	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		$\begin{gathered} 9.5 \\ 10.3 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Disable Time	5.0	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Enable Time	5.0	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{gathered} 10.9 \\ 8.9 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.5 \end{gathered}$	ns

AC Operating Requirements

Normal Operation

Symbol	Parameter	V_{Cc} (V)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
		(Note 9)	Guaranteed Minimum		
t_{s}	Setup Time, H or L Data to CP	5.0	3.0	3.0	ns
t_{H}	Hold Time, H or L CP to Data	5.0	1.5	1.5	ns
t_{W}	CP Pulse Width	5.0	5.0	5.0	ns
$\mathrm{f}_{\text {MAX }}$	Maximum ACP/BCP Clock Frequency	5.0	100	90	MHz
Note 9: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.					

AC Electrical Characteristics

Scan Test Operation								
Symbol	Parameter	V_{CC} (V) (Note 10)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$, $t_{\text {PHL }}$	Propagation Delay TCK to TDO	5.0	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 13.2 \\ & 13.2 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 14.5 \\ & 14.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Disable Time TCK to TDO	5.0	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & \hline 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 11.9 \\ & 11.9 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Enable Time TCK to TDO	5.0	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 15.8 \\ & 15.8 \end{aligned}$	ns
$\begin{aligned} & t_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay TCK to Data Out During Update-DR State	5.0	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 18.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 19.8 \\ & 19.8 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay TCK to Data Out During Update-IR State	5.0	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 18.6 \\ & 18.6 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 20.2 \\ & 20.2 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\mathrm{PLH}}, \\ & t_{\mathrm{PHL}} \end{aligned}$	Propagation Delay TCK to Data Out During Test Logic Reset State	5.0	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 19.9 \\ & 19.9 \end{aligned}$	$\begin{aligned} & \hline 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 21.5 \\ & 21.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay TCK to Data Out During Update-DR State	5.0	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 16.4 \\ & 16.4 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 18.2 \\ & 18.2 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\mathrm{PLZ}}, \\ & t_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay TCK to Data Out During Update-IR State	5.0	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 19.5 \\ & 19.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 20.8 \\ & 20.8 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Propagation Delay TCK to Data Out During Test Logic Reset State	5.0	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 19.9 \\ & 19.9 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 21.5 \\ & 21.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Propagation Delay TCK to Data Out During Update-DR State	5.0	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 18.9 \\ & 18.9 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 20.9 \\ & 20.9 \end{aligned}$	ns
$\overline{t_{\text {PZL }}}$, $t_{\text {PZH }}$	Propagation Delay TCK to Data Out During Update-IR State	5.0	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$		$\begin{aligned} & 22.4 \\ & 22.4 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 24.2 \\ & 24.2 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Propagation Delay TCK to Data Out During Test Logic Reset State	5.0	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 23.8 \\ & 23.8 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 25.7 \\ & 25.7 \end{aligned}$	ns

Note 10: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
Note: All Propagation Delays involving TCK are measured from the falling edge of TCK.

AC Operating Requirements					
Symbol	Parameter	V_{cc} (V)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
		(Note 11)	Guaranteed Minimum		
$\mathrm{t}_{\text {s }}$	Setup Time, H or L Data to TCK (Note 12)	5.0	3.0	3.0	ns
${ }_{\text {t }}$	$\begin{aligned} & \text { Hold Time, H or L } \\ & \text { TCK to Data (Note 12) } \end{aligned}$	5.0	4.5	4.5	ns
t_{s}	$\begin{aligned} & \text { Setup Time, H or L } \\ & \overline{\mathrm{AOE}}_{\overline{1}}, \overline{\mathrm{BOE}}_{\overline{1}} \text { to TCK (Note 13) } \end{aligned}$	5.0	3.0	3.0	ns
t_{H}	$\begin{aligned} & \text { Hold Time, H or L } \\ & \text { TCK to } \overline{\mathrm{AOE}}_{\overline{1}}, \overline{\mathrm{BOE}}_{\overline{1}} \text { (Note 13) } \end{aligned}$	5.0	4.5	4.5	ns
$\mathrm{t}_{\text {s }}$	Setup Time, H or L Internal AOE, BOE to TCK (Note 14)	5.0	3.0	3.0	ns
${ }_{\text {t }}$	$\begin{aligned} & \text { Hold Time, H or L } \\ & \text { TCK to Internal AOE, BOE (Note 14) } \end{aligned}$	5.0	3.0	3.0	ns
$\mathrm{t}_{\text {s }}$	Setup Time ACP, BCP (Note 15) to TCK	5.0	3.0	3.0	ns
t_{H}	Hold Time TCK to ACP, BCP (Note 15)	5.0	3.5	3.5	ns
$\mathrm{t}_{\text {s }}$	$\begin{aligned} & \text { Setup Time, H or L } \\ & \text { TMS to TCK } \end{aligned}$	5.0	8.0	8.0	ns
t_{H}	Hold Time, H or L TCK to TMS	5.0	2.0	2.0	ns
$\mathrm{t}_{\text {s }}$	$\begin{aligned} & \text { Setup Time, H or L } \\ & \text { TDI to TCK } \end{aligned}$	5.0	4.0	4.0	ns
${ }_{\text {t }}$	$\begin{aligned} & \text { Hold Time, H or L } \\ & \text { TCK to TDI } \end{aligned}$	5.0	4.5	4.5	ns
tw	Pulse Width TCK	5.0	$\begin{gathered} 15.0 \\ 5.0 \end{gathered}$	$\begin{gathered} 15.0 \\ 5.0 \end{gathered}$	ns
${ }_{\text {max }}$	$\begin{array}{\|l\|} \hline \text { Maximum TCK } \\ \text { Clock Frequency } \end{array}$	5.0	25	25	MHz
$\mathrm{T}_{\text {pu }}$	Wait Time, Power Up to TCK	5.0	100	100	ns
$\mathrm{T}_{\text {dn }}$	Power Down Delay	0.0	100	100	ms
Note 11: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$. Note 12: This delay represents the timing relationship between the data Input and TCK at the associated scan cells numbered 0-8, 9-17, 18-26 and 27-35. Note 13: Timing pertains to BSR 38 and 41 only. Note 14: This delay represents the timing relationship between AOE, BOE and TCK at scan cells 36 and 39 only. Note 15: Timing pertains to BSR 37 and 40 only. Note: All Input Timing Delays involving TCK are measured from the rising edge of TCK.					

Extended AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ 18 \text { Outputs } \\ \text { Switching } \\ \text { (Note } 16 \text {) } \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ (\text { Note 17) } \end{gathered}$	Units
		Min	Typ	Max	Min Max	
$\mathrm{t}_{\text {PLH }}$,	Propagation Delay	3.0		11.5	$4.0 \quad 13.5$	ns
$\mathrm{t}_{\text {PHL }}$	Data to Output	3.0		12.5	$4.0 \quad 16.5$	
$\mathrm{t}_{\text {PZH, }}$	Output Enable Time	2.5		10.5	(Note 18)	ns
$t_{\text {PZL }}$				2.5		ns
$\mathrm{t}_{\mathrm{PHZ}}$,	Output Disable Time	2.0		10.5	(Note 19)	ns
$t_{\text {PLZ }}$		2.0		10.5		
$\mathrm{t}_{\mathrm{OSHL}}$	Pin to Pin Skew		0.5	1.0	1.0	ns
(Note 20)	HL Data to Output					
$\mathrm{t}_{\text {OSLH }}$	Pin to Pin Skew		0.5	1.0	1.0	ns
(Note 20)	LH Data to Output					

