

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SCG2500 Synchronous Clock Generators

2111 Comprehensive Drive
Aurora, Illinois 60505
Phone: 630-851-4722
Fax: 630-851-5040
www.conwin.com

General Description

The SCG2500 is a mixed-signal phase lock loop generating CMOS outputs from an intrinsically low jitter voltage controlled crystal oscillator.

The SCG2500 can lock to one of two possible input reference frequencies at 8 kHz which is selectable using one input select pin.

Further features include an alarm output to indicate Loss of Reference, LOR, or Loss of Lock, LOL. If only one of the references is lost, the unit will disable its phase detector and will signal an alarm, but will not switch reference automatically. If both references are lost, the SCG2500 will enter a Free Run state which will guarantee a 20 ppm accurate output. Additionally, the Free Run mode may be entered manually by applying a high signal to the Force Free Run pin. If the unit is in Free Run mode, the Free Run status pin will be high.

All outputs, except the Oscillator Output, may be put into the tri-state high impedance condition for external testing purposes by applying a high signal to the Reset/Tri-State pin.

The filtered 8 kHz is derived from the oscillator output. The offset between the filtered output and the reference input will change with each reference rearrangement.

The package maximum dimensions are .780" x .830" x .35" on a six layer FR4 board with surface mount pins. Parts are assembled using high temperature solder to withstand surface mount reflow process.

Features

- Phase Locked Output Frequency Control
- Intrinsically Low Jitter Crystal Oscillator
- Two Selectable References @ 8 kHz
- Alarm Output
- Tri-Statable Alarm Outputs and Reference Output
- Force Free Run Function
- Automatic Free Run Operation upon loss of both references
- Input Duty Cycle Tolerant
- 3.3 Volt Power Supply
- Small Size: 0.78" x 0.83" x 0.35" maximum
- Surface Mount, DIL Package

US Headquarters: 630-851-4722 European Headquarters: +353-61-472221

Absolute Maximum Rating

Table 1

Symbol	Parameter	Minimum	Nominal	Maximum	Units	Notes
V _{cc}	Power Supply Voltage	-0.5	-	+4.0	Volts	
V _I	Input Voltage	-0.5	-	+5.5	Volts	
T _s	Storage Temperature	-65.0	-	+150.0	°C	

Operating Specifications

Table 2

Parameter	Specifications	Notes	
Voltage	3.3V ±5%	1.0	
Current	150 mA @ 3.46V		
Oscillator Output Frequencies	1.544, 2.048, 19.44, 20.48, 44.736, 51.84, and 77.76 MHz		
Temperature Range	0 to 70°C		
Input Frequency Ref 1 and Ref 2	8 kHz	2.0	
Input Jitter Tolerance (Jitter Frequencies ≥ 10 Hz)	≥ 31.25us Typical		
Jitter Bandwidth	< 10 Hz		
Acquisition Time	Approximately 1 second	3.0	
Capture/Pull-In Range	± 25 ppm Minimum		
Output Duty Cycle	40/60 % Min/Max @ 50% Level		
Output Rise and Fall Time	3 nS @ 20% to 80% output level		
Output Load	30 pF		
Alarm	LOR/LOL Status Signal Output		
Free Run Accuracy	±20 ppm		
Package	Fr4 SM 0.78" x 0.83" x 0.350" (Maximum)		
MTIE @ Synchronization Rearrangement	GR-253-CORE, 1999 R5-136		
MTIE @ Synchronization Rearrangement	GR-253-CORE, 1999 R5-136 4.0, 4.		

Input and Output Characteristics

Table 3

V _{II} High level input voltage V _{IL} Low level input voltage	2.0 0	-	5.5	V	
V _{IL} Low level input voltage	0				
		-	0.8	V	
T _{IO} I/O to output valid	-	-	10	nS	
C _{OUT} Output capacitance	-	-	10	pF	
V _{HO} High level output voltage loh = -4	4mA 2.40	-	-	-	Vcc Min
V _{IO} Low Level output voltage lo1 = 8	BmA -	-	0.4	-	Vcc Max
T _{IR} Input reference signal pulse width	30	-	-	nS	

Preliminary Data Sheet #: SG027 Page 2 of 10 Rev: 02 Date: 03/15/02

Output Jitter Specifications

Table 4

All SCG2500 Models (Ver. 2)

Frequency (MHz)	Jitter BW 10 Hz pS (RMS)	- 1 MHz m UI	SONET Jitter BW 12 kHz - pS (RMS)	20 MHz m UI
1.544	30 Тур.	0.046 Typ.	4 Typ.	0.006 Typ.
2.048	30 Typ.	0.061 Typ.	4 Typ.	0.008 Typ.
19.44	10 Typ.	0.194 Typ.	1 Max., 0.5 Typ.	0.019 Max.
20.48	10 Typ.	0.205 Typ.	1 Max., 0.5 Typ.	0.020 Max.
34.368	10 Typ.	0.344Typ.	1 Max., 0.5 Typ.	0.034Max.
44.736	10 Typ.	0.447Typ.	1 Max., 0.5 Typ.	0.045 Max.
51.84	10 Typ.	0.518 Typ.	1 Max., 0.5 Typ.	0.052 Max.
77.76	10 Typ.	0.778Typ.	1 Max., 0.5 Typ.	0.078 Max.

Input Selection / Output Response

Table 5

All SCG2500 Models

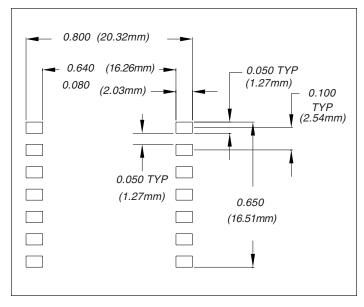
		INPUTS				OUPUTS			
Reset/ Tri-State	SEL _{AB}	REF _A	REF _B	FR	FR _{status}	Alarm	Oscillator Output	8 kHz Output	Notes
1	Χ	Χ	Χ	Х	TS	TS	FR	TS	
0	Χ	Χ	Χ	1	1	1	FR	FR	
0	0	Α	Α	0	0	0	LRA	LRAD	
0	1	NA	Α	0	0	0	LRB	LRBD	
0	0	NA	Α	0	0	1	U	U	5.0
0	1	Α	NA	0	0	1	U	U	5.0
0	0	Α	NA	0	0	0	LRA	LRAD	
0	Χ	NA	NA	0	1	1	FR	FR	

TS = Tri-State U = Unstable

FR = Free Run LRAD = Locked to Ref A and divided down LRA = Locked to Ref A LRAB = Locked to ref B and divided down

LRB = Locked to Reb B X = Don't care

NOTES:


- 1.0 Requires external regulation
- 2.0 Externally selectable via Input Select AB
- 3.0 From a 20 ppm offset in reference frequency
- 4.0 Entry into Free Run doesn't meet requirement for initial 2.33 seconds of self-timing
- 4.1 If the selected reference is removed, system response to the ALARM must be less than 10µs
- 5.0 On alarm assertion, switch references. If alarm is still active, force Free Run

Preliminary Data Sheet #: SG027 Page 3 of 10 Rev: 02 Date: 03/15/02

Circuit Board Footprint

Figure 1

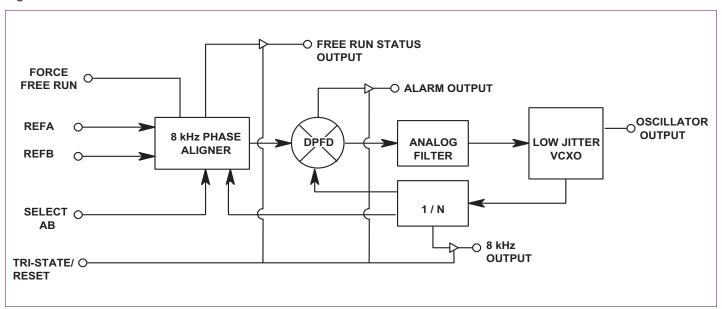
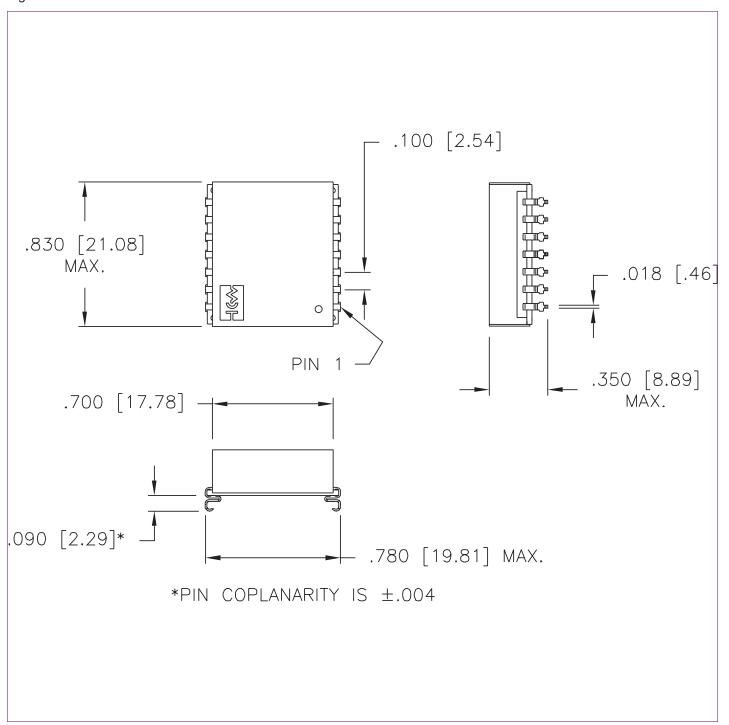
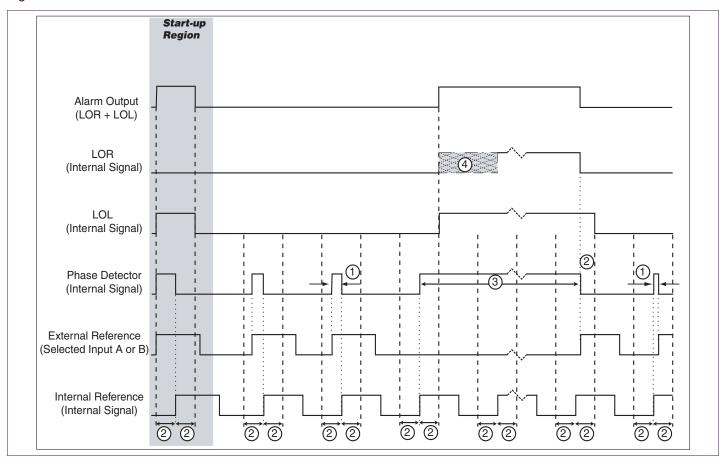

Pin Connections

Table 6


Pin	Connection
1	Filtered 8 kHz Output
2	TCK
3	TMS
4	Ground
5	Force Free Run / TDI (1 = Free Run)
6	Alarm Output (1 = Alarm)
7	REF B
8	REF A
9	Oscillator Output
10	Free Run Status Output (FR = 1)
11	Vcc
12	TDO
13	Reset / Tri-State
14	Input Reference Select AB (A = 0, B = 1)

Block Diagram

Figure 2



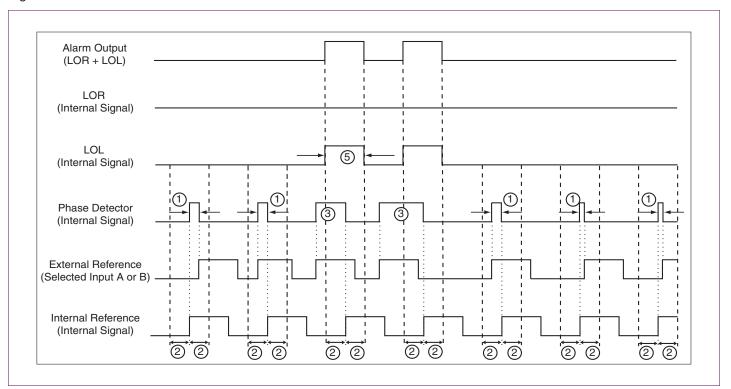
© Copyright 2002 The Connor-Winfield Corp. All Rights Reserved Specifications subject to change without notice

Loss of Reference Condition Alarm Timing

Figure 4

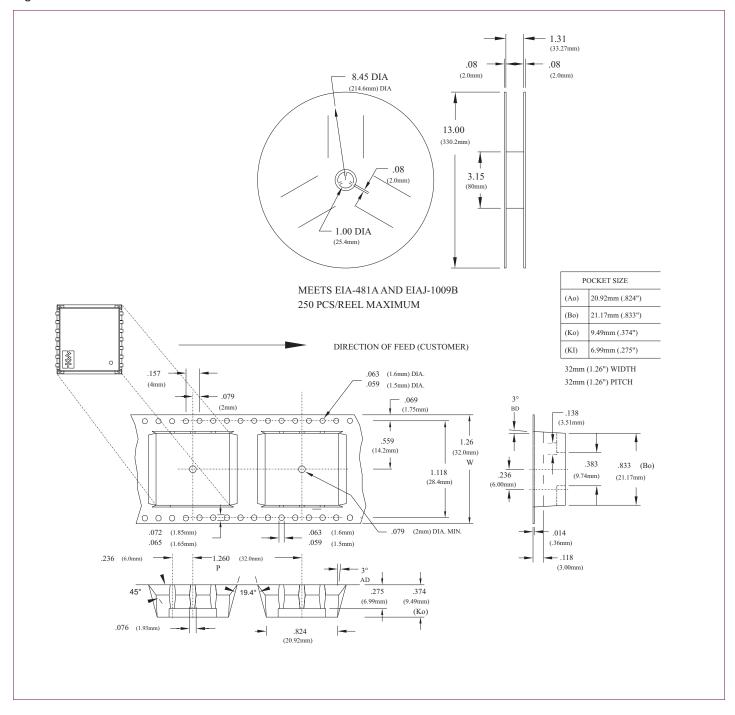
AlarmTiming Legend

Use for all alarm timing diagrams

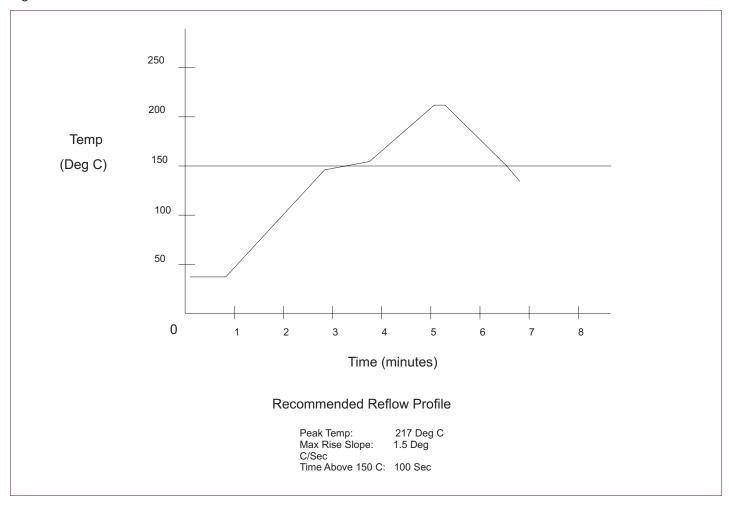

Table 7

	19.44 MHz Reference Input Units	8 kHz Reference Input Units		
1	< 1 μsec	< 31.25 μ sec		
2	1 μsec	31.25 μ sec		
3	> 1 μ sec	> 31.25 μ sec		
4	LOR is active when LOL is active	125 μsec wide range		
(5)	Minimum pulse width = 2 μ sec	Minimum pulse width = 62.5 μsec		
Start-up Region	During Start-up, The LOL Alaram will pulse			
·	during the few seconds of operation			

Loss of Lock Condition Alarm Timing


Figure 5

Tape and Reel Packaging


Figure 6

Solder Profile

Figure 7

Ordering Information

SCG{XXXX}-{FFF.FFF}{M}

XXXX equals a specific model (2500)

FFF.FFF equals the Oscillator Output frequency (001.544, 002.048, 019.44, 020.48, 034.368, 044.736, 051.84, 077.76)

M equals MHZ and is added to all part numbers

Example: To order an SCG2500 with an Oscillator Output of 77.76 MHz, Order part number SCG2500-077.76M

Please contact Connor-Winfield for other frequencies that may be available.

Revision	Revision Date	Note
00	4/24/01	Product Release
01	7/24/01	Reformatted to new Style
02	3/15/02	Updated Jitter Table