

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

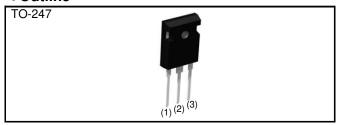
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

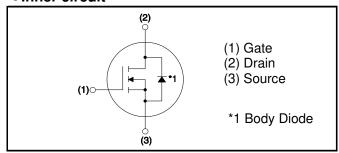
SCT2450KE

N-channel SiC power MOSFET

V_{DSS}	1200V
R _{DS(on)} (Typ.)	450m $Ω$
I _D	10A
P_{D}	85W


Features

- 1) Low on-resistance
- 2) Fast switching speed
- 3) Fast reverse recovery
- 4) Easy to parallel
- 5) Simple to drive
- 6) Pb-free lead plating; RoHS compliant


Application

- · Solar inverters
- DC/DC converters
- Switch mode power supplies
- Induction heating
- Motor drives

Outline

•Inner circuit

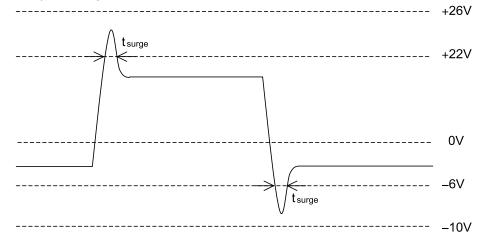
Packaging specifications

	Packaging	Tube
	Reel size (mm)	-
Tuno	Tape width (mm)	-
Туре	Basic ordering unit (pcs)	30
	Packing code	С
	Marking	SCT2450KE

● Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Value	Unit	
Drain - Source voltage		V_{DSS}	1200	V
Continuous drain current	$T_c = 25^{\circ}C$	I _D *1	10	Α
Continuous drain current	T _c = 100°C	I _D *1	7	А
Pulsed drain current		I _{D,pulse} *2	25	Α
Gate - Source voltage (DC)		V_{GSS}	-6 to 22	V
Gate - Source surge voltage (T _{surge} < 300nsec)		V _{GSS-surge} *3	-10 to 26	V
Power dissipation (T _c = 25°C)		P _D	85	W
Junction temperature		T _j	175	°C
Range of storage temperature		T _{stg}	-55 to +175	°C

●Thermal resistance


Parameter	Symbol	Values			Unit
Farameter	Symbol	Min.	Тур.	Max.	Offic
Thermal resistance, junction - case	R_{thJC}	-	1.36	1.77	°C/W
Thermal resistance, junction - ambient	R_{thJA}	-	-	50	°C/W
Soldering temperature, wavesoldering for 10s	T_{sold}	-	-	265	°C

• Electrical characteristics $(T_a = 25^{\circ}C)$

Parameter	Symbol	Conditions	Values			Unit
r arameter	Symbol	Conditions	Min.	Тур.	Max.	Ullit
Drain - Source breakdown voltage	$V_{(BR)DSS}$	$V_{GS} = 0V$, $I_D = 1mA$	1200	-	-	V
		$V_{DS} = 1200V, V_{GS} = 0V$				
Zero gate voltage drain current	I_{DSS}	$T_j = 25$ °C	-	1	10	μΑ
		T _j = 150°C	-	2	-	
Gate - Source leakage current	I _{GSS+}	$V_{GS} = +22V, V_{DS} = 0V$	-	-	100	nA
Gate - Source leakage current	$I_{\mathrm{GSS-}}$	$V_{GS} = -6V, V_{DS} = 0V$	-	-	-100	nA
Gate threshold voltage	V _{GS (th)}	$V_{DS} = V_{GS}$, $I_D = 0.9 \text{mA}$	1.6	2.8	4.0	V

^{*1} Limited only by maximum temperature allowed.

^{*3} Example of acceptable Vgs waveform

*4 Pulsed

^{*2} PW \leq 10 μ s, Duty cycle \leq 1%

•Electrical characteristics $(T_a = 25^{\circ}C)$

Doromotor	Symbol Conditions		Values			1.1
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
		$V_{GS} = 18V, I_D = 3A$				
Static drain - source on - state resistance	R _{DS(on)} *4	T _j = 25°C	-	450	585	mΩ
		T _j = 125°C	-	610	-	
Gate input resistance	R_{G}	f = 1MHz, open drain	-	25	-	Ω
Transconductance	g _{fs} *4	$V_{DS} = 10V, I_D = 3A$	-	1.0	-	S
Input capacitance	C _{iss}	$V_{GS} = 0V$	-	463	-	
Output capacitance	C _{oss}	$V_{DS} = 800V$	-	21	-	рF
Reverse transfer capacitance	C _{rss}	f = 1MHz	-	4	-	
Effective output capacitance, energy related	C _{o(er)}	$V_{GS} = 0V$ $V_{DS} = 0V$ to 500V	-	31	-	pF
Turn - on delay time	t _{d(on)} *4	$V_{DD} = 400 V, V_{GS} = 18 V$	-	19	_	
Rise time	t _r *4	$I_D = 3A$	-	17	-	
Turn - off delay time	t _{d(off)} *4	$R_L = 133\Omega$	-	38	-	ns
Fall time	t _f *4	$R_G = 0\Omega$	-	34	-	
Turn - on switching loss	E _{on} *4	$V_{DD} = 600V, I_{D} = 3A$ $V_{GS} = 18V/0V$	-	47	-	1
Turn - off switching loss	E _{off} *4	$R_{G} = 0\Omega$, L=500 μ H * E_{on} includes diode reverse recovery	-	17	-	μJ

●Gate Charge characteristics (T_a = 25°C)

Parameter	Symbol	Conditions	Values			Unit
r ai ainietei	Symbol	Conditions	Min.	Тур.	Max.	Offic
Total gate charge	Qg *4	V _{DD} = 400V	-	27	ı	
Gate - Source charge	Q _{gs} *4	$I_D = 3A$	-	7	ı	nC
Gate - Drain charge	Q _{gd} *4	$V_{GS} = 18V$	-	9	-	
Gate plateau voltage	V _(plateau)	$V_{DD} = 400V, I_D = 3A$	-	10.5	-	V

ullet Body diode electrical characteristics (Source-Drain) (T_a = 25°C)

Parameter	Symbol	Conditions	Values			Unit
r arameter	Symbol	Conditions	Min.	Тур.	Max.	UTIIL
Inverse diode continuous, forward current	l _S *1	-T _c = 25°C	ı	1	10	Α
Inverse diode direct current, pulsed	I _{SM} *2		-	-	25	Α
Forward voltage	V _{SD} *4	$V_{GS} = 0V$, $I_S = 3A$	-	4.3	-	V
Reverse recovery time	t _{rr} *4		ı	19	ı	ns
Reverse recovery charge	Q _{rr} *4	I _F = 3A, V _R = 400V di/dt = 110A/μs	-	13	-	nC
Peak reverse recovery current	I _{rrm} *4		-	1.4	-	Α

● Typical Transient Thermal Characteristics

Symbol	Value	Unit
R _{th1}	230m	
R _{th2}	687m	K/W
R _{th3}	441m	

Symbol	Value	Unit
C _{th1}	219μ	
C _{th2}	1.29m	Ws/K
C _{th3}	13.1m	

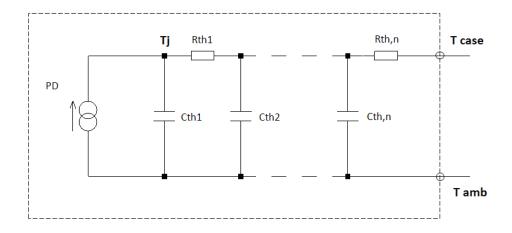
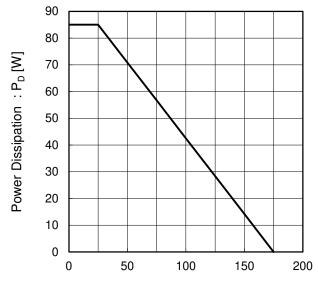
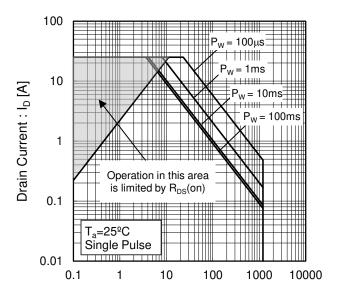




Fig.1 Power Dissipation Derating Curve

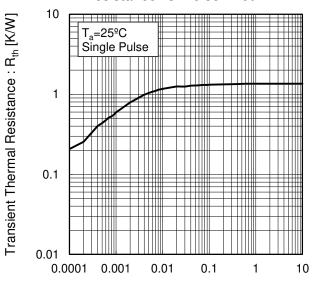

Junction Temperature : T_i [°C]

Fig.2 Maximum Safe Operating Area

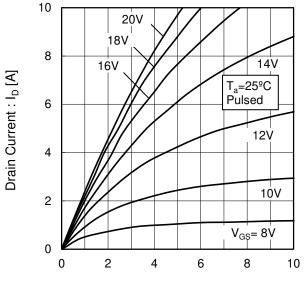

Drain - Source Voltage : V_{DS} [V]

Fig.3 Typical Transient Thermal Resistance vs. Pulse Width

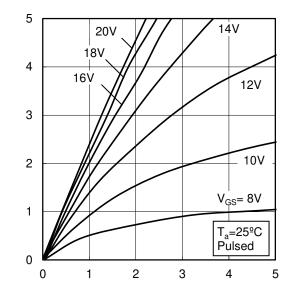
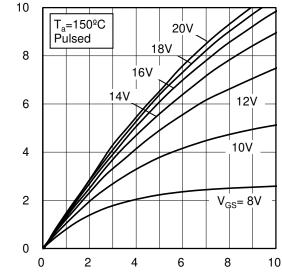

Pulse Width : P_W [s]

Fig.4 Typical Output Characteristics(I)

Drain - Source Voltage : V_{DS} [V]

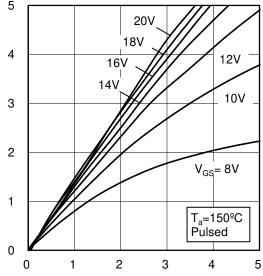
Fig.5 Typical Output Characteristics(II)



Drain Current : I_D [A]

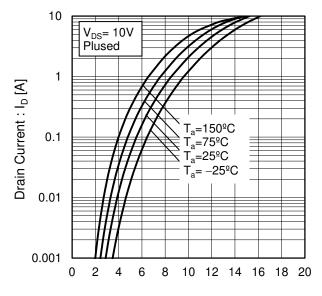
Drain Current : I_D [A]

Drain - Source Voltage : V_{DS} [V]


Fig.6 T_j = 150°C Typical Output
Characteristics(I)

Drain - Source Voltage : $V_{DS}\left[V\right]$

Fig.7 T_j = 150°C Typical Output
Characteristics(II)


5

Drain - Source Voltage : V_{DS} [V]

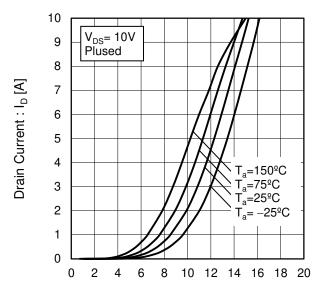

Drain Current : I_D [A]

Fig.8 Typical Transfer Characteristics (I)

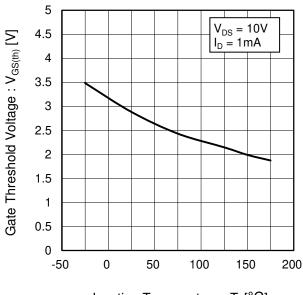

Gate - Source Voltage : V_{GS} [V]

Fig.9 Typical Transfer Characteristics (II)

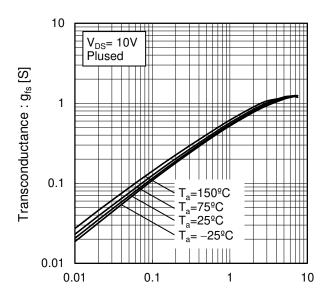

Gate - Source Voltage : V_{GS} [V]

Fig.10 Gate Threshold Voltage vs. Junction Temperature

Junction Temperature : T_j [°C]

Fig.11 Transconductance vs. Drain Current

Drain Current : I_D [A]

Fig.12 Static Drain - Source On - State Resistance vs. Gate Source Voltage

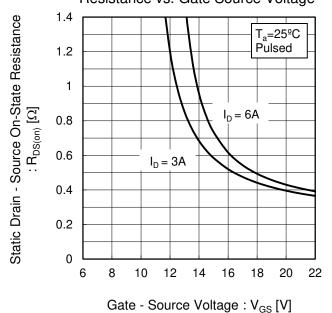
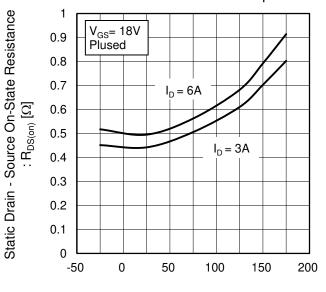
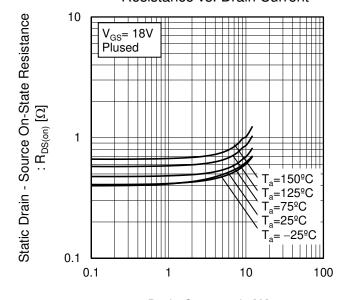




Fig.13 Static Drain - Source On - State Resistance vs. Junction Temperature

Junction Temperature : T_i [${}^{\circ}C$]

Fig.14 Static Drain - Source On - State Resistance vs. Drain Current

Drain Current : I_D [A]

Fig.15 Typical Capacitance vs. Drain - Source Voltage

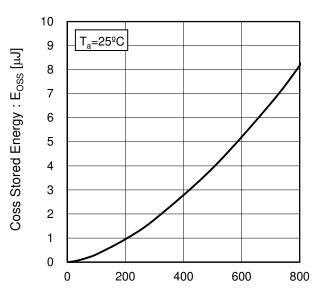
10000

1000 C_{iss} 1000 C_{iss} C_{rss} C_{rss} 1000

10 C_{rss} 1000

10

100


100

100

1000

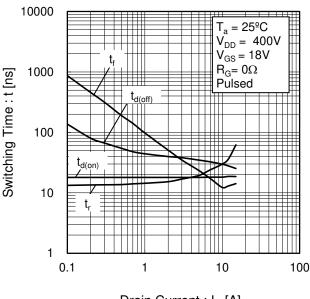

Drain - Source Voltage : $V_{DS}\left[V\right]$

Fig.16 Coss Stored Energy

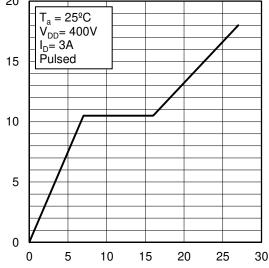
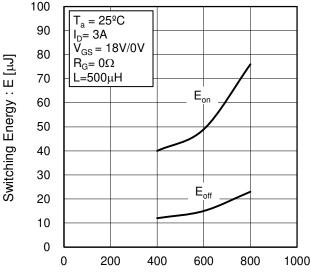

Drain - Source Voltage : V_{DS} [V]

Fig.17 Switching Characteristics

Drain Current : I_D [A]


Fig.18 Dynamic Input Characteristics

Total Gate Charge : Q_g [nC]

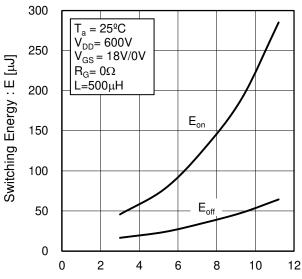

Gate - Source Voltage: V_{GS} [V]

Fig.19 Typical Switching Loss
vs. Drain - Source Voltage

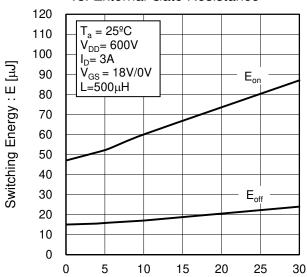
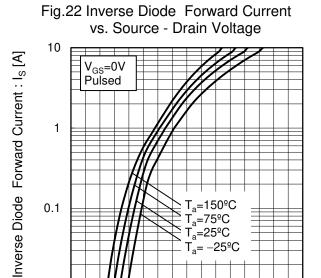

Drain - Source Voltage : V_{DS} [V]

Fig.20 Typical Switching Loss vs. Drain Current

Drain Current : I_D [A]

Fig.21 Typical Switching Loss vs. External Gate Resistance

External Gate Resistance : $R_G[\Omega]$


0.01

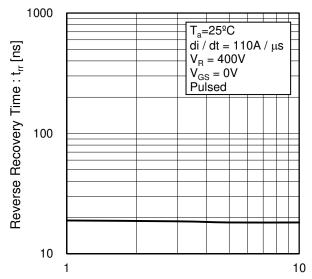
0

2

3

•Electrical characteristic curves

Source - Drain Voltage : V_{SD} [V]


4

5

6

8

Fig.23 Reverse Recovery Time vs.Inverse Diode Forward Current

Inverse Diode Forward Current : I_S [A]

Measurement circuits

Fig.1-1 Switching Time Measurement Circuit

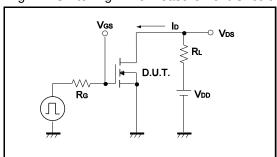


Fig.2-1 Gate Charge Measurement Circuit

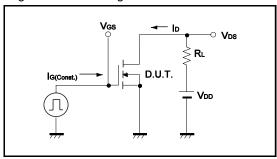


Fig.3-1 Switching Energy Measurement Circuit

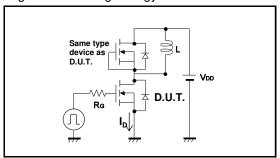


Fig.4-1 Reverse Recovery Time Measurement Circuit Fig.4-2 Reverse Recovery Waveform

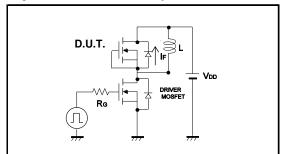


Fig.1-2 Switching Waveforms

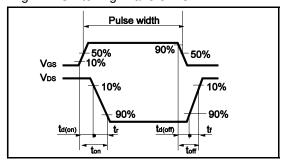
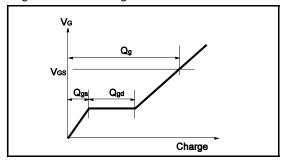
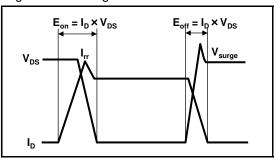
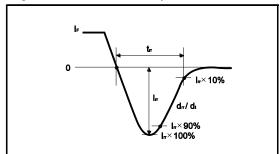
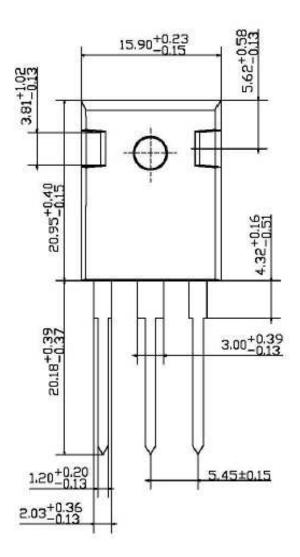
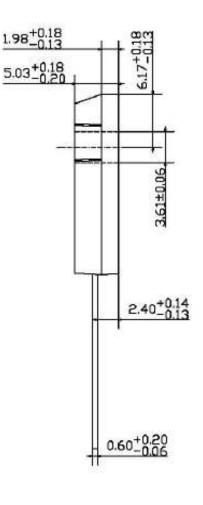
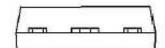


Fig.2-2 Gate Charge Waveform


Fig.3-2 Switching Waveforms





● **Dimensions** (Unit: mm)

TO-247

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/