imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

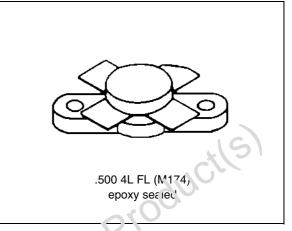
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

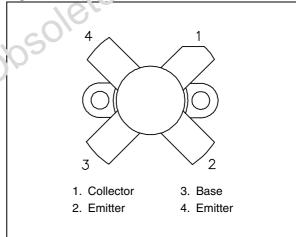
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SD1731 (TH562) RF POWER BIPOLAR TRANSISTORS HF SSB APPLICATIONS


FEATURES SUMMARY

- OPTIMIZED FOR SSB
- 30 MHz
- 50 VOLTS
- EFFICIENCY 40%
- COMMON EMITTER
- GOLD METALLIZATION
- POUT = 220 W PEP WITH 13 dB GAIN


DESCRIPTION

The SD1731 is a 50 V epitaxial silicon NPN planar transistor designed primarily for SSB communications. This device utilizes emitter ballasting for improved ruggedness and reliability.

Figure 1. Package

Figure 2. Pin Connection

Solete Production Table 1. Order Codes

Order Codes	Marking	Package	Packaging	
SD1731 (TH562)	SD1731	M174	PLASTIC TRAYS	

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	110	V
V _{CEO}	Collector-Emitter Voltage	55	V
V _{EBO}	Emitter-Base Voltage	4.0	V
IC	Device Current	20	A
P _{DISS}	Power Dissipation ($T_{heatsink} \le 25^{\circ}C$)	233	W
TJ	Junction Temperature	+200	°C
T _{STG}	Storage Temperature	– 65 to +150	°C

Table 2. Absolute Maximum Ratings (T_{case} = 25°C)

Table 3. Thermal Data

Symbol	Parameter	Value	Unit
R _{TH(j-c)}	Junction-Case Thermal Resistance	0.55	°C/W
R _{TH(c-s)}	Case-Heatsink Thermal Resistance	0.2	°C/W
	SPECIFICATIONS (T _{case} = 25°C)	e produiu	
Symbol	Test Conditions	Value	Unit

ELECTRICAL SPECIFICATIONS

Table 4. Static (T_{case} = 25°C)

Symbol	Test Conditions	Value			Unit
Symbol		Min.	Тур.	Max.	onit
BV _{CBO}	I _C = 200 mA; I _E = 0 mA	110	_		V
BV _{CEO}	$I_{\rm C} = 200 \text{ mA}; I_{\rm B} = 0 \text{ mA}$	55	-		V
BV _{EBO}	I _E = 20 mA; I _C = 0 mA	4.0	_	-	V
I _{CEO}	V _{CE} = 30 V; I _E = 0 mA	_	_	5	mA
ICES	V _{CE} = 55 V; I _E = 0 mA	_	_	10	mA
h _{FE}	V _{CE} = 6 V; I _C = 10 A	15	_	80	_

Table 5. Dynamic (T_{heatsink} = 25°C)

Symbol	Test Conditions	Value			Unit
Symbol		Min.	Тур.	Max.	onit
Роит	f = 30 MHz; V _{CE} = 50 V; I _{CQ} = 150 mA	220	—	_	W
G _P ⁽¹⁾	$P_{OUT} = 220 \text{ W PEP}; V_{CE} = 50 \text{ V}; I_{CQ} = 150 \text{ mA}$	13	_	_	dB
IMD ⁽¹⁾	$P_{OUT} = 220 \text{ W PEP}; V_{CE} = 50 \text{ V}; I_{CQ} = 150 \text{ mA}$	_	_	-30	dBc
ηc ⁽¹⁾	$P_{OUT} = 220 \text{ W PEP}; V_{CE} = 50 \text{ V}; I_{CQ} = 150 \text{ mA}$	40	_	_	%
C _{OB}	f = 1 MHz; V _{CB} = 50 V	—	330	_	pF

57

Note: 1. $f_1 = 30.00 \text{ MHz}, f_2 = 30.001 \text{ MHz}$

TYPICAL PERFORMANCE

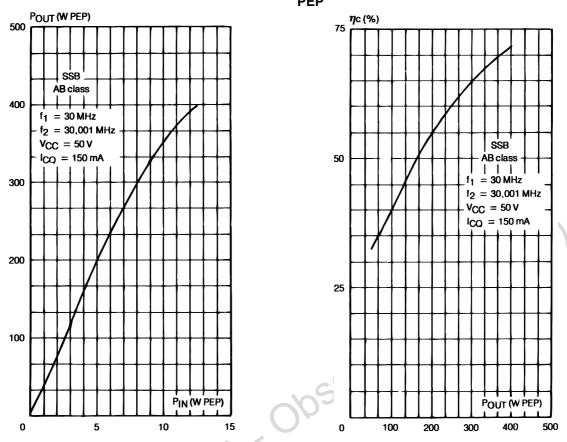


Figure 3. Power Output PEP vs Power Input

Figure 5. Intermodulation Distortion vs Power Output PEP

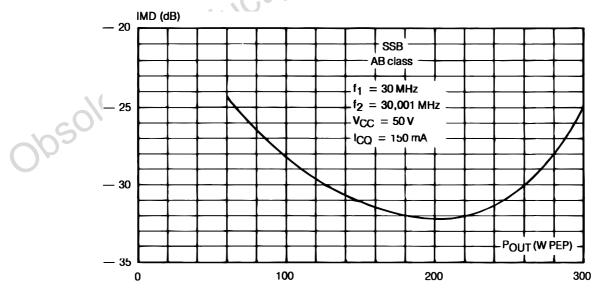
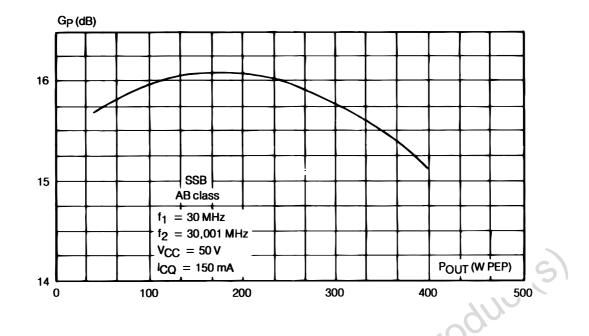
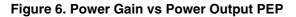
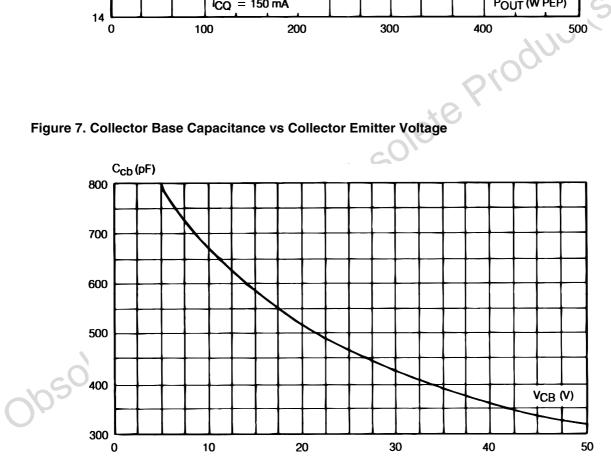
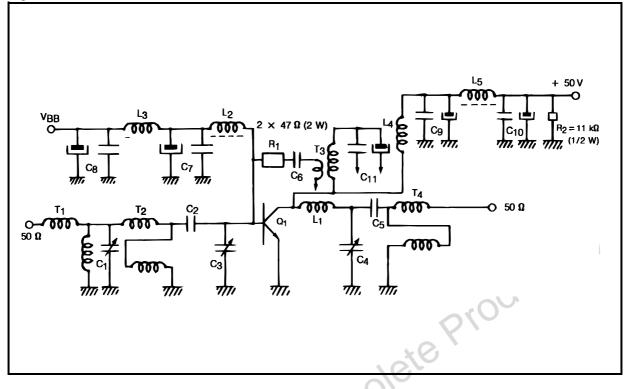





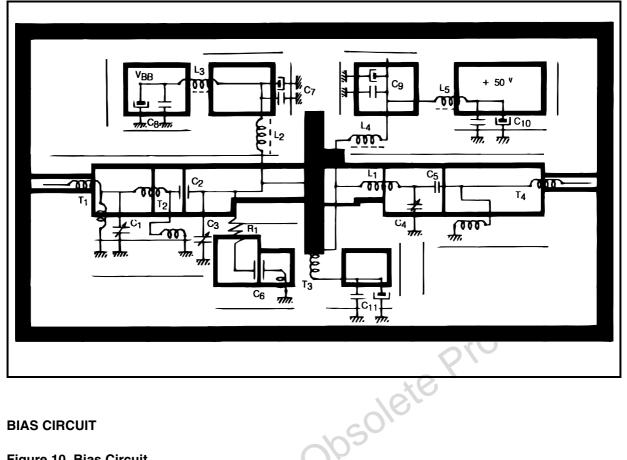
Figure 4. Collector Efficiency vs Power Output PEP

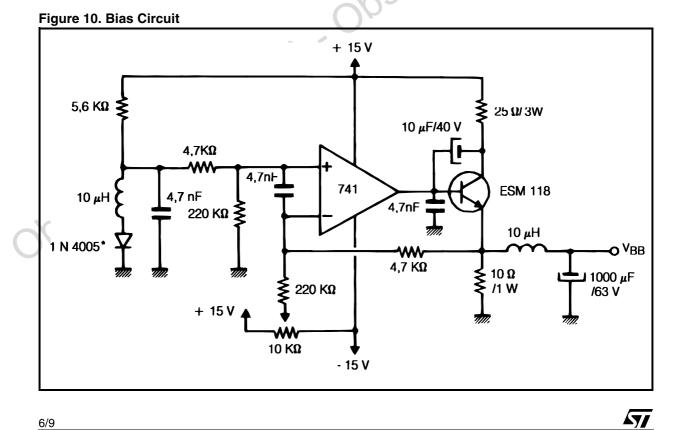


4/9

57

TEST CIRCUIT

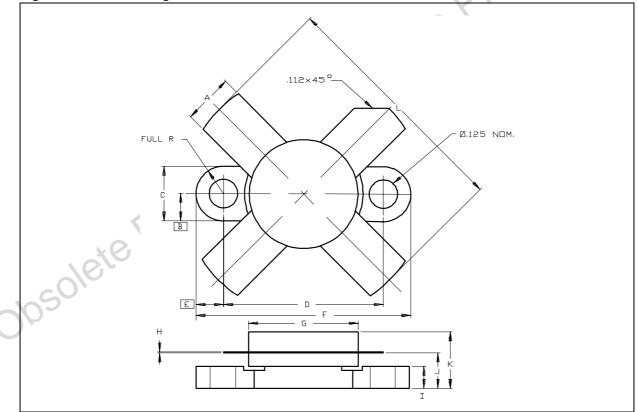

Figure 8. Test Circuit


Table 6. Test Circuit

C1	Arco 426 + 220pF + 330pF Chips
C2	2 x 10nF Chips
C3	Arco 4615 + 2.2nF + 2 x 1nF LCC + 4.7nF + 560pf Chps
C4	Arco 4213 + 330pF Chip
C5	10nF Chip
C6	3 x 10nF Chips
C7, C8, C9, C10, C11	1nF + 10nF + 100nF + 4.7μF, 63V + 100μF, 63V
L1	3 Turns of 1.2mm Unenameled Wire Diameter, 7.1mm, Length 13mm
L2, L3	8 Turns of 0.55mm Enameled Wire on Ferrite Core Phillips 4C6 97170 (9 x 6 x 3)
L4	10 Turns of 1.2mm Enameled Wire, Diameter 8.1mm, Length 20mm
L5	7 Turns of 1.2mm Enameled Wire on Ferrite Core Phillips 4C6 97180
T1	6:3.5 Impedance Transformer on toriod Phillips 4C6 97180
T2	Twisted Pair 4:1 Transformer, 4 Turns Made with 1.0mm Enameled on toriod Phillips 4C6 97180
ТЗ	Feedback Transformer Primary: 2 Turns of 1mm Enameled Wire Secondary: 8 Turns of 1mm Enameled Wire
Τ4	Twisted Pair 4:1 Transformer, 4 Turns of bifilar Twisted 1.2mm Wires on Ferrite Core Phillips 4C6 97200

Figure 9. Mounting Circuit

BIAS CIRCUIT


6/9

PACKAGE MECHANICAL

Symbol	millimeters			inches		
Symbol	Min	Тур	Max	Min	Тур	Max
А	5.59		5.84	0.220		0.230
В		3.18			0.125	
С	6.22		6.48	0.245		0.255
D	18.28		18.54	0.720		0.730
Е		3.18			0.125	
F	24.64		24.89	0.970		0.980
G	12.57		12.83	0.495		0.505
Н	0.08		0.18	0.003		0.007
I	2.29		2.79	0.090		0.110
J	4.06		4.45	0.160		0.175
К			7.11			0.280
L			26.67		<u>U</u>	1.050
ure 11. M17	74 Package Di	mensions	1		21000	

Table 7. M174 Mechanical Data

Figure 11. M174 Package Dimensions

Note: Drawing is not to scale.

REVISION HISTORY

Table 8. Revision History

Date	Revision	Description of Changes
July-1995	1	First Issue
8-June-2004	2	Stylesheet update. No content change.

obsolete Product(s). Obsolete Product(s)

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third pattes which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information reproval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com

57