

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

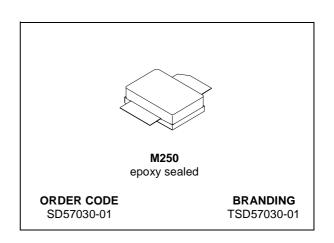
Contact us

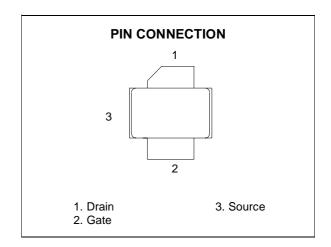
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SD57030-01


RF POWER TRANSISTORS The *LdmoST* FAMILY


N-CHANNEL ENHANCEMENT-MODE LATERAL MOSFETs

- EXCELLENT THERMAL STABILITY
- COMMON SOURCE CONFIGURATION
- Pout = 30 W WITH 13 dB gain @ 945 MHz
- BeO FREE PACKAGE

The SD57030-01 is a common source N-Channel enhancement-mode lateral Field-Effect RF power transistor designed for broadband commercial and industrial applications at frequencies up to 1.0 GHz. The SD57030-01 is designed for high gain and broadband performance operating in common source mode at 28 V. It is ideal for base station applications requiring high linearity.

ABSOLUTE MAXIMUM RATINGS (T_{CASE} = 25°C)

Symbol	Parameter	Value	Unit	
V _{(BR)DSS}	Drain-Source Voltage	65	V	
V_{DGR}	Drain-Gate Voltage (R _{GS} = 1 M Ω)	65	V	
V _{GS}	Gate-Source Voltage	+ 20	V	
I _D	Drain Current	4	А	
P _{DISS}	Power Dissipation (@ Tc = 70°C)	74	W	
Tj	Max. Operating Junction Temperature	200	°C	
T _{STG}	Storage Temperature	-65 to + 200	°C	

THERMAL DATA

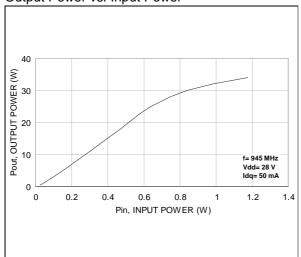
R _{th(j-c)}	Junction -Case Thermal Resistance	1.75	°C/W

March, 24 2003 1/7

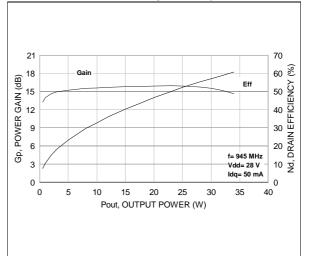
ELECTRICAL SPECIFICATION (T_{CASE} = 25°C)

STATIC

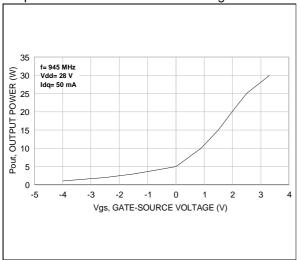
Symbol		Test Conditio	ns	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	V _{GS} = 0 V	$I_{DS} = 10 \text{ mA}$		65			V
I _{DSS}	V _{GS} = 0 V	V _{DS} = 28 V				1	μΑ
I _{GSS}	V _{GS} = 20 V	V _{DS} = 0 V				1	μΑ
V _{GS(Q)}	V _{DS} = 28 V	I _D = 50 mA		2.0		5.0	V
V _{DS(ON)}	V _{GS} = 10 V	I _D = 3 A			1.3		V
G _{FS}	V _{DS} = 10 V	I _D = 3 A			1.8		mho
C _{ISS} *	V _{GS} = 0 V	V _{DS} = 28 V	f = 1 MHz		58		pF
Coss	V _{GS} = 0 V	V _{DS} = 28 V	f = 1 MHz		34		pF
C _{RSS}	V _{GS} = 0 V	V _{DS} = 28 V	f = 1 MHz		2.7		pF

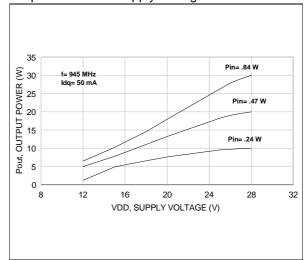

Ref. 7143417B

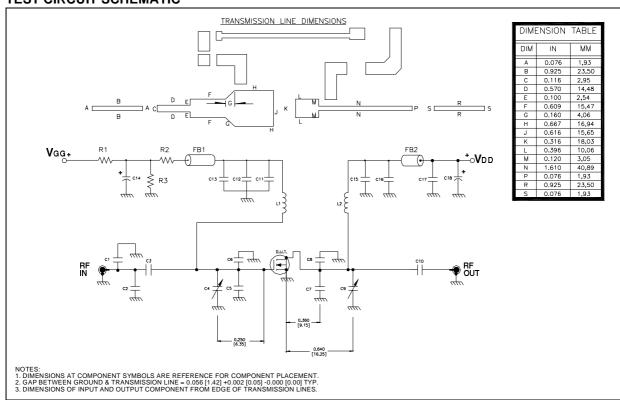
DYNAMIC


Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Pout	$V_{DD} = 28 \text{ V}$ $I_{DQ} = 50 \text{ mA}$ $f = 945 \text{ MHz}$	30			W
G _{PS}	V _{DD} = 28 V I _{DQ} = 50 mA P _{OUT} = 30 W f = 945 MHz	13	15		dB
η_{D}	$V_{DD} = 28 \text{ V}$ $I_{DQ} = 50 \text{ mA}$ $P_{OUT} = 30 \text{ W}$ $f = 945 \text{ MHz}$	50	60		%
Load mismatch	V_{DD} = 28 V I_{DQ} = 50 mA P_{OUT} = 28 W f = 945 MHz ALL PHASE ANGLES	10:1			VSWR

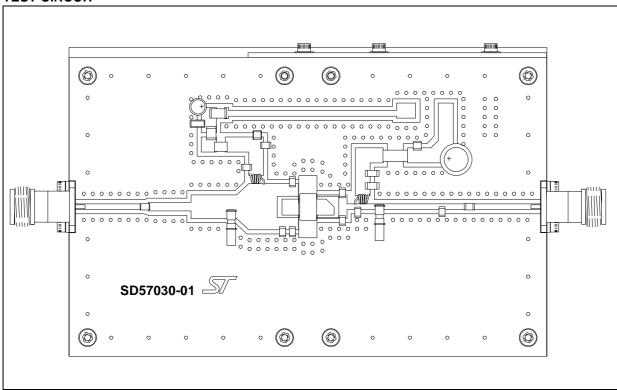
TYPICAL PERFORMANCE (CW)

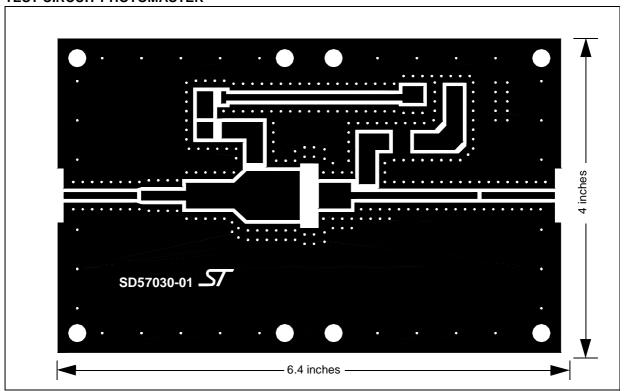

Output Power vs. Input Power


Power Gain and Efficiency vs. Output Power


Output Power vs. Gate Source Voltage

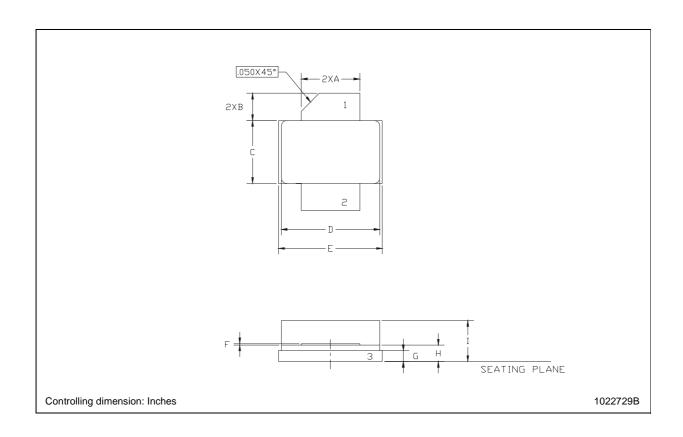
Output Power vs. Supply Voltage


TEST CIRCUIT SCHEMATIC


TEST CIRCUIT COMPONENT PART LIST

COMPONENT	DESCRIPTION
C19	200 μF / 63V ALLUMINIUM ELECTROLYTIC RADIAL LEAD CAPACITOR
C18, C14	0.1 μF / 500V SURFACE MOUNT CERAMIC CHIP CAPACITOR
C17	100 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C16, C12, C11,C1	47 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C15	10 μF / 50V ALUMINIUM ELECTROLYTIC RADIAL LEAD CAPACITOR
C13	100 pF ATC 700B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C9, C2	0.8-8.0 pF GIGA TRIM VARIABLE CAPACITOR
C8	6.2 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C7, C6, C5 ,C4	10 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C3	3 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
R3	120 0-IM, 2W SURFACE MOUNT CERAMIC CHIP CAPACITOR
R2	4.7 M OHM 1W SURFACE MOUNT CERAMIC CHIP CAPACITOR
R1	18 K OHM, 1W SURFACE MOUNT CERAMIC CHIP CAPACITOR
FB2, FB1	SHIELD BEAD SURFACE MOUNT EMI
L2, L1	INDUCTOR, 5 TURNS AIR WOUND #22AWG, ID=0.059[1.49], NYLON COATED MAGNET WIRE
PCB	WOVEN FIBERGLASS REINFORCED PTFE 0.080" THK, &r=2.55, 2 Oz EDCu BOTH SIDE

TEST CIRCUIT



TEST CIRCUIT PHOTOMASTER

M250 (.230 x .360 2L N/HERM W/FLG) MECHANICAL DATA

DIM.		mm			Inch	
	MIN.	TYP.	MAX	MIN.	TYP.	MAX
А	5.21		5.71	0.205		0.225
В	2.16		2.92	0.085		0.115
С	5.59		6.09	0.220		0.240
D	8.89		9.40	0.350		0.370
E	9.40		9.91	0.370		0.390
F	0.11		0.15	0.004		0.006
G	0.89		1.14	0.035		0.045
Н	1.45		1.70	0.057		0.067
I	2.67		3.94	0.105		0.155

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics ® 2003 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com