imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SE97BDDR memory module temp sensor with integrated SPDRev. 01 - 27 January 2010Product data sheet

1. General description

Meets JEDEC Specification 42.4 TSE2002B1, 3 Jun 2009. The NXP Semiconductors SE97B measures temperature from -40 °C to +125 °C with JEDEC Grade B \pm 1 °C maximum accuracy between +75 °C and +95 °C critical zone and also provide 256 bytes of EEPROM memory communicating via the l²C-bus/SMBus. It is typically mounted on a DDR3 Dual In-Line Memory Module (DIMM) measuring the DRAM temperature in accordance with the new JEDEC (JC-42.4) *Mobile Platform Memory Module Temperature Sensor Component* specification and also replacing the Serial Presence Detect (SPD) which is used to store memory module and vendor information.

The SE97B thermal sensor and EEPROM operates over the V_{DD} range of 3.0 V to 3.6 V.

The TS consists of a $\Delta\Sigma$ Analog to Digital Converter (ADC) that monitors and updates its own temperature readings 10 times per second, converts the reading to a digital data, and latches them into the data temperature register. User-programmable registers, the specification of upper/lower alarm and critical temperature trip points, EVENT output control, and temperature shutdown, provide flexibility for DIMM temperature-sensing applications.

When the temperature changes beyond the specified boundary limits, the SE97B outputs an EVENT signal using an open-drain output that can be pulled up between 0.9 V and 3.6 V. The user has the option of setting the EVENT output signal polarity as either an active LOW or active HIGH comparator output for thermostat operation, or as a temperature event interrupt output for microprocessor-based systems. The EVENT output can also be configured as only a critical temperature output.

The EEPROM is designed specifically for DRAM DIMMs SPD. The lower 128 bytes (address 00h to 7Fh) can be Permanent Write Protected (PWP) or Reversible Write Protected (RWP) by software. This allows DRAM vendor and product information to be stored and write protected. The upper 128 bytes (address 80h to FFh) are not write protected and can be used for general purpose data storage.

The SE97B has a single die for both the temp sensor and EEPROM for higher reliability and supports the industry-standard 2-wire I²C-bus/SMBus serial interface. The SMBus TIMEOUT function is supported to prevent system lock-ups. Manufacturer and Device ID registers provide the ability to confirm the identity of the device. Three address pins allow up to eight devices to be controlled on a single bus.

The SE98B is available as the SE97B thermal sensor only.

SE97B

Feature	SE97	SE97B		
JEDEC specification	old JEDEC specification	new JEDEC specification		
Bit 8 '1' Thermal Sensor shutdown	no SMBus Timeout	CMDue Timequit 25 me to 25 me		
Bit 8 '0' Thermal Sensor active	SMBus Timeout 25 ms to 35 ms	SMBus Timeout 25 ms to 35 ms		
I ² C-bus maximum frequency	400	kHz		
I^2C SCL and SDA V_{IL}/V_{IH} voltage levels	$V_{IL(max)}=0.3\times V_{DD};$	$V_{IH(min)} = 0.7 \times V_{DD}$		
Capabilities bit 6 SMBus Timeout	set to 0	set to 1		
EVENT pin operation	frozen	de-assert		
Capabilities bit 7 EVENT pin	set to 0	set to 1		
A0 pin is 10 V tolerant	уе	S		
Capabilities bit 5 VHV	set to 0	set to 1		
I ² C spike suppression	50	\$		
I ² C input hysteresis	-	$0.05 imes V_{DD}$		
SE97 Device ID register	1010	0010		
Revision ID register	0000 0001	0000 0011		
Temperature Sensor accuracy	Grade B	Improved Grade B		
Power-On Reset (POR)	0.6 V	1.8 V		
Temperature Sensor voltage range	3.0 V to 3.6 V			
EEPROM Write voltage range	3.0 V to	9 3.6 V		
EEPROM Read voltage range	1.7 V to 3.6 V	3.0 V to 3.6 V		
2 mm \times 3 mm \times 0.8 mm package	assembly plant Hong Kong	assembly plant Bangkok (thicker die and leadframe)		

Table 1. Comparison of SE97 versus SE97B features

2. Features

2.1 General features

- JEDEC (JC-42.4) DIMM temperature sensor plus 256-byte serial EEPROM for Serial Presence Detect (SPD)
- SDA open-drain output design for best operation in distributed multi-point applications
- Shutdown current: 0.1 μA (typ.) and 5.0 μA (max.)
- Power-on reset: 1.8 V (typ.)
- 2-wire interface: I²C-bus/SMBus compatible, 0 Hz to 400 kHz
- SMBus Alert Response Address and TIMEOUT 25 ms to 35 ms (programmable)
- ESD protection exceeds 2500 V HBM per JESD22-A114, 250 V MM per JESD22-A115, and 1000 V CDM per JESD22-C101
- Latch-up testing is done to JEDEC Standard JESD78 which exceeds 100 mA
- Available in HWSON8 package

2.2 **Temperature sensor features**

- 11-bit ADC Temperature-to-Digital converter with 0.125 °C resolution
- Voltage range: 3.0 V to 3.6 V
- Operating current: 250 μA (typ.) and 400 μA (max.)

SE97B

- Programmable hysteresis threshold: off, 0 °C, 1.5 °C, 3 °C, 6 °C
- Over/under/critical temperature EVENT output
- B-grade accuracy:
 - ♦ $\pm 0.5 \text{ °C/}\pm 1 \text{ °C}$ (typ./max.) $\rightarrow +75 \text{ °C}$ to +95 °C
 - ◆ $\pm 1.0 \text{ °C/}\pm 2 \text{ °C}$ (typ./max.) → +40 °C to +125 °C
 - ◆ $\pm 2.0 \text{ °C/} \pm 3 \text{ °C}$ (typ./max.) → -40 °C to +125 °C

2.3 Serial EEPROM features

- Read and write voltage range: 3.0 V to 3.6 V
- Operating current:
 - Write \rightarrow 0.6 mA (typ.) for 3.5 ms (typ.)
 - Read \rightarrow 100 μ A (typ.)
- Organized as 1 block of 256 bytes (256 × 8)
- 100,000 write/erase cycles and 10 years of data retention
- Permanent and Reversible Software Write Protect
- Software Write Protection for the lower 128 bytes

3. Applications

- DDR2 and DDR3 memory modules
- Laptops, personal computers and servers
- Enterprise networking
- Hard disk drives and other PC peripherals

4. Ordering information

Table 2.Ordering information

Type number	Topside	Package						
	mark	Name	Description	Version				
SE97BTP ^[1]	97B	HWSON8	plastic thermal enhanced very very thin small outline package; no leads; 8 terminals; body $2 \times 3 \times 0.8$ mm	SOT1069-2				

[1] Industry standard 2 mm × 3 mm × 0.8 mm package to JEDEC WCE-3, PSON8 in 8 mm × 4 mm pitch tape 4 k quantity reels.

SE97B

5. Block diagram

SE97B

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3.	Pin des	scription	
Symbol	Pin	Туре	Description
A0	1	I	I ² C-bus/SMBus slave address bit 0 with internal pull-down. This input is overvoltage tolerant to support software write protection.
A1	2		I ² C-bus/SMBus slave address bit 1 with internal pull-down
A2	3	I	I ² C-bus/SMBus slave address bit 2 with internal pull-down
V _{SS}	4	ground	device ground
SDA	5	I/O	SMBus/I ² C-bus serial data input/output (open-drain). Must have external pull-up resistor.
SCL	6	I	SMBus/I ² C-bus serial clock input/output (open-drain). Must have external pull-up resistor.
EVENT	7	0	Thermal alarm output for high/low and critical temperature limit (open-drain). Must have external pull-up resistor.
V _{DD}	8	power	device power supply (3.0 V to 3.6 V)

7. Functional description

7.1 Serial bus interface

The SE97B communicates with a host controller by means of the 2-wire serial bus (I²C-bus/SMBus) that consists of a serial clock (SCL) and serial data (SDA) signals. The device supports SMBus, I²C-bus Standard-mode and Fast-mode. The I²C-bus standard speed is defined to have bus speeds from 0 Hz to 100 kHz, I²C-bus fast speed from 0 Hz to 400 kHz, and the SMBus is from 10 kHz to 100 kHz. The host or bus master generates the SCL signal, and the SE97B uses the SCL signal to receive or send data on the SDA line. Data transfer is serial, bidirectional, and is one byte at a time with the Most Significant Bit (MSB) transferred first. Since SCL and SDA are open-drain, pull-up resistors must be installed on these pins.

7.2 Slave address

The SE97B uses a 4-bit fixed and 3-bit programmable (A0, A1 and A2) 7-bit slave address that allows a total of eight devices to coexist on the same bus. The A0, A1 and A2 pins are pulled LOW internally. The A0 pin is also overvoltage tolerant supporting 10 V software write protect. When it is driven higher than 7.0 V, writing a special command would put the EEPROM in reversible write protect mode (see Section 7.10.2 "Memory Protection"). Each pin is sampled at the start of each I²C-bus/SMBus access. The temperature sensor's fixed address is '0011b'. The EEPROM's fixed address for the normal EEPROM read/write is '1010b', and for EEPROM software protection command is '0110b'. Refer to Figure 3.

7.3 EVENT output condition

The EVENT output indicates conditions such as the temperature crossing a predefined boundary. The EVENT modes are very configurable and selected using the configuration register (CONFIG). The interrupt mode or comparator mode is selected using CONFIG[0], using either TCRIT/UPPER/LOWER or TCRIT only temperature bands (CONFIG[2]) as modified by hysteresis (CONFIG[10:9]). The UPPER/LOWER (CONFIG[6]) and TCRIT (CONFIG[7]) bands can be locked. Figure 4 shows an example of the measured temperature versus time, with the corresponding behavior of the EVENT output in each of these modes.

Upon device power-up, the default condition for the EVENT output is high-impedance to prevent spurious or unwanted alarms, but can be later enabled (CONFIG[3]). CONFIG[3] does not have to be cleared (e.g., set back to (0)) before changing CONFIG[2] or CONFIG[0]. EVENT output polarity can be set to active HIGH or active LOW (CONFIG[1]). EVENT status can be read (CONFIG[4]) and cleared (CONFIG[5]).

If the $\overline{\text{EVENT}}$ output is enabled (CONFIG[3] = 1) and the part is switched between Interrupt mode and Comparator mode or vice versa, the $\overline{\text{EVENT}}$ output may glitch during the change.

If the device enters Shutdown mode (CONFIG[8]) with asserted EVENT output, the output either de-asserts (default) or remains asserted (frozen) depending on SMBUS[4].

7.3.1 EVENT pin output voltage levels and resistor sizing

The EVENT open-drain output is typically pulled up to a voltage level from 0.9 V to 3.6 V with an external pull-up resistor, but there is no real lower limit on the pull-up voltage for the EVENT pin since it is simply an open-drain NMOS pull-down output. It could be pulled up to 0.1 V and would not affect the output. From the system perspective, there will be a practical limit. That limit will be the voltage necessary for the device monitoring the interrupt pin to detect a HIGH on its input. A possible practical limit for a CMOS input would be 0.4 V. Another thing to consider is the value of the pull-up resistor. When a low supply voltage is applied to the drain (through the pull-up resistor) it is important to use a higher value pull-up resistor, to allow a larger maximum signal swing on the EVENT pin.

SE97B 1

NXP Semiconductors

DDR memory module temp sensor with integrated SPD

SE97B

Table 4. EVENT output condition

Figure	EVENT output boundary	Ē	EVENT outpu	ıt	Temperature Register Status bits			
note	conditions	Comparator mode	Interrupt mode	Critical Temp only mode	Bit 15 Above Critical Trip	Bit 14 Above Alarm Window	Bit 13 Below Alarm Window	
(1)	$T_{amb} \ge T_{trip(I)}$	Н	L	Н	0	0	0	
(2)	$T_{amb} < T_{trip(l)} - T_{hys}$	L	L	Н	0	0	1	
(3)	$T_{amb} > T_{trip(u)}$	L	L	Н	0	1	0	
(4)	$T_{amb} \leq T_{trip(u)} - T_{hys}$	Н	L	Н	0	0	0	
(5)	$T_{amb} \ge T_{th(crit)}$	L	L	L	1	1	0	
(6)	$T_{amb} < T_{th(crit)} - T_{hys}$	L	Н	Н	0	1	0	
(7)	Table note [1]							

[1] Between $T_{amb} \ge T_{th(crit)}$ and $T_{amb} < T_{th(crit)} - T_{hys}$ the EVENT output is in Comparator mode and bit 0 of CONFIG (EVENT output mode) is ignored.

SE978

7.3.2 EVENT thresholds

7.3.2.1 Alarm window

The device provides a comparison window with an UPPER trip point and a LOWER trip point, programmed through the Upper Boundary Alarm Trip register (02h), and Lower Boundary Alarm Trip register (03h). The Upper Boundary Alarm Trip register holds the upper temperature trip point, while the Lower Boundary Alarm Trip register holds the lower temperature trip point as modified by hysteresis as programmed in the Configuration register. When enabled, the EVENT output triggers whenever entering or exiting (crossing above or below) the alarm window.

- · Advisory note:
 - NXP device: The EVENT output can be cleared through the clear EVENT bit or SMBus Alert Response Address (ARA).
 - Competitor device: The EVENT output can be cleared only through the clear EVENT bit.
 - Work-around: Only clear EVENT output using the EVENT bit if both NXP and competitor devices are used.

The Upper Boundary Alarm Trip should always be set above the Lower Boundary Alarm Trip.

The alarm window limit is immediately compared with the temperature register even if it has not been recently updated (e.g., device has been in standby) when the EVENT is turned on (CONFIG[3]).

Consider waiting one conversion cycle (125 ms) after setting the alarm window limit before enabling the EVENT output/comparing the alarm window limit with the temperature register to ensure that there is correct data in the temperature register.

If SMBUS[2] is set, then the alarm window limit will only be compared to the Temperature register after it has been updated when EVENT is turned on.

7.3.2.2 Critical trip

The $T_{th(crit)}$ temperature setting is programmed in the Critical Alarm Trip register (04h) as modified by hysteresis as programmed in the Configuration register. When the temperature reaches the critical temperature value in this register (and EVENT is enabled), the EVENT output asserts and cannot be de-asserted until the temperature drops below the critical temperature threshold. The Event cannot be cleared through the clear EVENT bit or SMBus Alert.

The Critical Alarm Trip should always be set above the Upper Boundary Alarm Trip.

The critical trip limit is immediately compared with the temperature register even if it has not been recently updated (e.g., device has been in standby) when the EVENT is turned on (CONFIG[3]).

Consider waiting one conversion cycle (125 ms) after setting the critical trip limit before enabling the EVENT output/comparing the critical trip limit with the temperature register to ensure that there is correct data in the temperature register.

If SMBUS[2] is set, then the alarm window limit will only be compared to the Temperature register after it has been updated when EVENT is turned on.

7.3.3 **EVENT** operation modes

7.3.3.1 Comparator mode

In comparator mode, the $\overline{\text{EVENT}}$ output behaves like a window-comparator output that asserts when the temperature is outside the window (e.g., above the value programmed in the Upper Boundary Alarm Trip register or below the value programmed in the Lower Boundary Alarm Trip register or above the Critical Alarm Trip register if $T_{th(crit)}$ only is selected). Reads/writes on these registers do not affect the $\overline{\text{EVENT}}$ output in comparator mode. The $\overline{\text{EVENT}}$ signal remains asserted until the temperature goes inside the alarm window or the window thresholds are reprogrammed so that the current temperature is within the alarm window.

The comparator mode is useful for thermostat-type applications, such as turning on a cooling fan or triggering a system shutdown when the temperature exceeds a safe operating range.

7.3.3.2 Interrupt mode

In interrupt mode, EVENT asserts whenever the temperature crosses an alarm window threshold. After such an event occurs, writing a 1 to the clear event bit in the configuration register de-asserts the EVENT output until the next trigger condition occurs.

In interrupt mode, EVENT asserts when the temperature crosses the alarm upper boundary. If the EVENT output is cleared and the temperature continues to increase until it crosses the critical temperature threshold, EVENT asserts again. Because the temperature is greater than the critical temperature threshold, a clear event command does not clear the EVENT output. Once the temperature drops below the critical temperature, EVENT de-asserts immediately.

If the $\overline{\text{EVENT}}$ output is not cleared before or when the temperature is in the critical temperature threshold, $\overline{\text{EVENT}}$ will remain asserted after the temperature drops below the critical temperature until a clear event command.

7.3.3.3 Switching between Comparator mode and Interrupt mode

When the part is in Comparator mode and the temperature windows are set such that the BAW bit is set and the $\overline{\text{EVENT}}$ pin asserted (EventOutputControl = 1) and the part is switched to Interrupt mode, the $\overline{\text{EVENT}}$ is de-asserted.

SE97B 1

SE97B

7.4 Conversion rate

The conversion time is the amount of time required for the ADC to complete a temperature measurement for the local temperature sensor. The conversion rate is the inverse of the conversion period which describes the number of cycles the temperature measurement completes in one second—the faster the conversion rate, the faster the temperature reading is updated. The SE97B's conversion rate is at least 8 Hz or 125 ms.

7.4.1 What temperature is read when conversion is in progress

The SE97B has been designed to ensure a valid temperature is always available. When a read to the temperature register is initiated through the SMBus, the device checks to see if the temperature conversion process (Analog-to-Digital conversion) is complete and a new temperature is available:

- If the temperature conversion process is complete, then the new temperature value is sent out on the SMBus.
- If the temperature conversion process in **not** complete, then the previous temperature value is sent out on the SMBus.

It is possible that while SMBus Master is reading the temperature register, a new temperature conversion completes. However, this will not affect the data (MSB or LSB) that is being shifted out. On the next read of the temperature register, the new temperature value will be shifted out.

7.5 Power-up default condition

After power-on, the SE97B is initialized to the following default condition:

- Starts monitoring local sensor
- EVENT register is cleared; EVENT output is pulled HIGH by external pull-ups
- EVENT hysteresis is defaulted to 0 °C
- · Command pointer is defaulted to '00h'
- Critical Temp, Alarm Temperature Upper and Lower Boundary Trip register are defaulted to 0 $^\circ\text{C}$
- Capability register is defaulted to '00F7h' for the B-grade and VHV capability, EVENT de-asserted and SMBus TIMEOUT between 25 ms and 35 ms enabled.
- Operational mode: comparator
- SMBus register is defaulted to '21h'

7.6 Device initialization

SE97B temperature sensors have programmable registers, which, upon power-up, default to zero. The open-drain EVENT output is default to being disabled, comparator mode and active LOW. The alarm trigger registers default to being unprotected. The configuration registers, upper and lower alarm boundary registers and critical temperature window are defaulted to zero and need to be programmed to the desired values. SMBus TIMEOUT feature defaults to being enabled and can be programmed to disable. These registers are required to be initialized before the device can properly function. Except for the SPD, which does not have any programmable registers, and does not need to be initialized.

<u>Table 5</u> shows the default values and the example value to be programmed to these registers.

Table 5.	Registers to be i	nitialized	
Register	Default value	Example value	Description
01h	0000h	0209h	Configuration register
			 hysteresis = 1.5 °C
			 EVENT output = Interrupt mode
			EVENT output is enabled
02h	0000h	0550h	Upper Boundary Alarm Trip register = 85 °C
03h	0000h	1F40h	Lower Boundary Alarm Trip register = $-20 \degree C$
04h	0000h	05F0h	Critical Alarm Trip register = 95 °C
22h	21h	21h	SMBus register = no change

7.7 SMBus TIMEOUT

The SE97B supports SMBus TIMEOUT feature. If the host holds SCL LOW more than 35 ms, the SE97B would reset its internal state machine to the bus IDLE state to prevent a system bus hang-up. This feature is turned on by default and release SDA. The SMBus TIMEOUT can be disabled by writing a '1' to SMBUS[7].

Remark: When SMBus TIMEOUT is enabled, the I²C-bus minimum bus speed is limited by the SMBus TIMEOUT specification limit of 10 kHz.

The SE97B has no SCL driver, so it cannot hold the SCL line LOW.

7.8 SMBus Alert Response Address (ARA)

The SE97B supports SMBus ALERT when it is programmed for the Interrupt mode and when the EVENT polarity bit is set to '0'. In Comparator mode or when the EVENT polarity bit is set to '1', the SMBus ALERT address is not acknowledged. The EVENT pin can be ANDed with other EVENT or interrupt signals from other slave devices to signal their intention to communicate with the host controller. When the host detects EVENT or other interrupt signal LOW, it issues an ARA to which a slave device would respond with its address. When there are multiple slave devices generating an ALERT the SE97B performs bus arbitration with the other slaves. If it wins the bus, it responds to the ARA and then clears the EVENT pin. This feature is turned off by default and can be enabled by writing a '0' to SMBUS[0].

Remark: Either in comparator mode or when the SE97B crosses the critical temperature, the host must also read the EVENT status bit and provide remedy to the situation by bringing the temperature to within the alarm window or below the critical temperature if that bit is set. Otherwise, the EVENT pin will not get de-asserted.

7.9 SMBus/I²C-bus interface

The data registers in this device are selected by the Pointer Register. At power-up, the Pointer Register is set to '00h', the location for the Capability Register. The Pointer Register latches the last location to which it was set. Each data register falls into one of three types of user accessibility:

- Read only
- Write only
- Write/Read same address

A 'write' to this device will always include the address byte and the pointer byte. A write to any register other than the Pointer register requires two data bytes.

Reading this device can take place either of two ways:

- If the location latched in the Pointer register is correct (most of the time it is expected that the Pointer register will point to one of the Temperature register (as it will be the data most frequently read), then the read can simply consist of an address byte, followed by retrieving the two data bytes.
- If the Pointer register needs to be set, then an address byte, pointer byte, repeat START, and another address byte will accomplish a read.

The data byte has the most significant bit first. At the end of a read, this device can accept either Acknowledge (ACK) or No Acknowledge (NACK) from the Master (No Acknowledge is typically used as a signal for the slave that the Master has read its last byte). It takes this device 125 ms to measure the temperature. Refer to timing diagrams <u>Figure 6</u> to <u>Figure 9</u> for how to program the device.

E97B

E97B

7.10 EEPROM operation

The 2-kbit EEPROM is organized as either 256 bytes of 8 bits each (byte mode), or 16 pages of 16 bytes each (page mode). Accessing the EEPROM in byte mode or page mode is automatic; partial page write of 2 bytes, 4 bytes, or 8 bytes is also supported. Communication with the EEPROM is via the 2-wire serial I²C-bus or SMBus. Figure 10 provides an overview of the EEPROM partitioning.

7.10.1 Write operations

7.10.1.1 Byte Write

In Byte Write mode the master creates a START condition and then broadcasts the slave address, byte address, and data to be written. The slave acknowledges all 3 bytes by pulling down the SDA line during the ninth clock cycle following each byte. The master creates a STOP condition after the last ACK from the slave, which then starts the internal write operation (see Figure 11). During internal write, the slave will ignore any read/write request from the master.

7.10.1.2 Page Write

The SE97B contains 256 bytes of data, arranged in 16 pages of 16 bytes each. The page is selected by the four Most Significant Bits (MSB) of the address byte presented to the device after the slave address, while the four Least Significant Bits (LSB) point to the byte within the page. By loading more than one data byte into the device, up to an entire page can be written in one write cycle (see Figure 12). The internal byte address counter will increment automatically after each data byte. If the master transmits more than 16 data bytes, then earlier bytes will be overwritten by later bytes in a wrap-around fashion within the selected page. The internal write cycle is started following the STOP condition created by the master.

7.10.1.3 Acknowledge polling

Acknowledge polling can be used to determine if the SE97B is busy writing or is ready to accept commands. Polling is implemented by sending a 'Selective Read' command (described in <u>Section 7.10.3 "Read operations"</u>) to the device. The SE97B will not acknowledge the slave address as long as internal write is in progress.

7.10.2 Memory Protection

The lower half (the first 128 bytes) of the memory can be write protected by special EEPROM commands without an external control pin. The SE97B features three types of memory write protection instructions, and three respective read Protection instructions. The level of write-protection (set or clear) that has been defined using these instructions remained defined even after power cycle.

The memory protection commands are:

- Permanent Write Protection (PWP)
- Reversible Write Protection (RWP)
- Clear Write Protection (CWP)
- Read Permanent Write Protection (RPWP)
- Read Reversible Write Protection (RRWP)
- Read Clear Write Protection (RCWP)

Table 6 is the summary for normal and memory protection instructions.

Command	Fixed address				Hardware selectable address			R/W
	Bit 7[1]	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Normal EEPROM read/write	1	0	1	0	A2	A1	A0	R/W
Reversible Write Protection (RWP)	0	1	1	0	V_{SS}	V_{SS}	V _{I(ov)} [2]	0
Clear Reversible Write Protection (CRWP)	0	1	1	0	V_{SS}	V_{DD}	V _{I(ov)} [2]	0
Permanent Write Protection (PWP)[3]	0	1	1	0	A2	A1	A0	0
Read RWP	0	1	1	0	V_{SS}	V_{SS}	V _{I(ov)} [2]	1
Read CRWP	0	1	1	0	V_{SS}	V_{DD}	V _{I(ov)} [2]	1
Read PWP	0	1	1	0	A2	A1	A0	1

Table 6. EEPROM commands summary

[1] The most significant bit, bit 7, is sent first.

[2] $V_{I(ov)}$ ranges from 7.0 V to 10 V.

[3] A0, A1, and A2 are compared against the respective external pins on the SE97B. Do not apply V_{I(ov)} to the A0 pin during Normal EEPROM read/write, Permanent Write Protection (PWP) and Read PWP.

This special EEPROM command consists of a unique 4-bit fixed address (0110b) and the voltage level applied on the 3-bit hardware address. Normally, to address the memory array, the 4-bit fixed address is '1010b'. To access the memory protection settings, the 4-bit fixed address is '0110b'. Figure 13 and Figure 14 show the write and read protection sequence, respectively.

Up to eight memory devices can be connected on a single I²C-bus. Each one is given a 3-bit on the hardware selectable address (A2, A1, A0) inputs. The device only responds when the 4-bit fixed and hardware selectable bits are matched. The 8th bit is the read/write bit. This bit is set to 1 or 0 for read and write protection, respectively.

The corresponding device acknowledges during the ninth bit time when there is a match on the 7-bit address.

The device does not acknowledge when there is no match on the 7-bit address or when the device is already in permanent write protection mode and is programmed with any write protection instructions (i.e., PWP, RWP, CWP).

7.10.2.1 Permanent Write Protection (PWP)

If the software write-protection has been set with the PWP instruction, the first 128 bytes of the memory are permanently write-protected. This write-protection cannot be cleared by any instruction, or by power-cycling the device. Also, once the PWP instruction has been successfully executed, the device no longer acknowledges any instruction (with 4-bit fixed address of 0110b) to access the write-protection settings.

7.10.2.2 Reversible Write Protection (RWP) and Clear Reversible Write Protection (CRWP)

If the software write-protection has been set with the RWP instruction, it can be cleared again with a CRWP instruction.

The two instructions, RWP and CRWP have the same format as a Byte Write instruction, but with a different setting for the hardware address pins (as shown in <u>Table 6</u>). Like the Byte Write instruction, it is followed by an address byte and a data byte, but in this case the contents are all 'Don't Care' (<u>Figure 13</u>). Another difference is that the voltage, $V_{I(ov)}$, must be applied on the A0 pin, and specific logical levels must be applied on the other two (A1 and A2), as shown in <u>Table 6</u>.

						AUN	write Cycle
							(t _W)
Permanently	PWP, RWP or CRWP	NACK	not significant	NACK	not significant	NACK	no
protected	page or byte write in lower 128 bytes	ACK	address	ACK	data	NACK	no
Protected with	RWP	NACK	not significant	NACK	not significant	NACK	no
RWP	CRWP	ACK	not significant	ACK	not significant	ACK	yes
	PWP	ACK	not significant	ACK	not significant	ACK	yes
	page or byte write in lower 128 bytes	ACK	address	ACK	data	NACK	no
Not protected	PWP or RWP	ACK	not significant	ACK	not significant	ACK	yes
1	CRWP	ACK	not significant	ACK	not significant	ACK	no
	page or byte write	ACK	address	ACK	data	ACK	yes

Table 7. Acknowledge when writing data or defining write protection Instructions with \overline{RM} bit = 0

7.10.2.3 Read Permanent Write Protection (RPWP), Read Reversible Write Protection (RRWP), and Read Clear Reversible Write Protection (RCRWP)

Read PWP, RWP, and CRWP allow the SE97B to be read in write protection mode. The instruction format is the same as that of the write protection except that the 8^{th} bit, R/W, is set to 1. Figure 14 shows the instruction format, while Table 8 shows the responses when the instructions are issued.

Table 8. Acknowledge when reading the write protection

Instructions with R/\overline{W} bit = 1.

Status	Instruction	ACK	Address	ACK	Data byte	ACK
Permanently protected	RPWP, RRWP or RCRWP	NACK	not significant	NACK	not significant	NACK
Protected with	RRWP	NACK	not significant	NACK	not significant	NACK
RWP	RCRWP	ACK	not significant	NACK	not significant	NACK
	RPWP	ACK	not significant	NACK	not significant	NACK
Not protected	RPWP, RRWP or RCRWP	ACK	not significant	NACK	not significant	NACK

7.10.3 Read operations

7.10.3.1 Current address read

In Standby mode, the SE97B internal address counter points to the data byte immediately following the last byte accessed by a previous operation. If the 'previous' byte was the last byte in memory, then the address counter will point to the first memory byte, and so on. If the SE97B decodes a slave address with a '1' in the R/W bit position (Figure 15), it will issue an Acknowledge in the ninth clock cycle and will then transmit the data byte being pointed at by the address counter. The master can then stop further transmission by issuing a No Acknowledge on the ninth bit then followed by a STOP condition.

7.10.3.2 Selective read

The read operation can also be started at an address different from the one stored in the address counter. The address counter can be 'initialized' by performing a 'dummy' write operation (Figure 16). The START condition is followed by the slave address (with the R/W bit set to '0') and the desired byte address. Instead of following-up with data, the master then issues a second START, followed by the 'Current Address Read' sequence, as described in Section 7.10.3.1.

SE97B 1

SE97B

7.10.3.3 Sequential read

If the master acknowledges the first data byte transmitted by the SE97B, then the device will continue transmitting as long as each data byte is acknowledged by the master (Figure 17). If the end of memory is reached during sequential Read, the address counter will 'wrap around' to the beginning of memory, and so on. Sequential Read works with either 'Immediate Address Read' or 'Selective Read', the only difference being the starting byte address.

8. Register descriptions

8.1 Register overview

This section describes all the registers used in the SE97B. The registers are used for latching the temperature reading, storing the low and high temperature limits, configuring, the hysteresis threshold of the ADC, as well as reporting status. The device uses the pointer register to access these registers. Read registers, as the name implies, are used for read only, and the write registers are for write only. Any attempt to read from a write-only register will result in reading '0's. Writing to a read-only register will have no effect on the read even though the write command is acknowledged. The Pointer register is an 8-bit register. All other registers are 16-bit.

	icgister su	in the y		
Address (hex)	Default state (hex)	Register name	Short name	JEDEC name
n/a	n/a	Pointer register		
00h	F7h	Capability register	CAP	Capabilities
01h	0000h	Configuration register	CONFIG	Configuration
02h	0000h	Upper Boundary Alarm Trip register	UPPER	High Limit
03h	0000h	Lower Boundary Alarm Trip register	LOWER	Low Limit
04h	0000h	Critical Alarm Trip register	CRITICAL	TCRIT Limit
05h	n/a	Temperature register	TEMP	Ambient Temperature
06h	1131h	Manufacturer ID register	MANID	Manufacturer ID
07h	A203h	Device ID/Revision register	DEVICEID	Device/Revision
08h to 21h	0000h	reserved registers		
22h	21h	SMBus register	SMBUS	
23h to FFh	0000h	reserved		Vendor-defined

Table 9.Register summary

A write to reserved registers my cause unexpected results which may result in requiring a reset by removing and re-applying its power.

8.2 CAP — Capability register (00h, 16-bit read-only)

Bit15141312111098Symbol	Table 10.	CAP - Capabil	ity register (ad	ddress 00h) I	bit allocation				
SymbolRFUDefault0000000AccessRRRRRRRBit76543210SymbolEVSDTMOUTVHVTRESTRESWRNGHACCBCAPDefault1110111AccessRRRRRRR	Bit	15	14	13	12	11	10	9	8
Default 0<	Symbol				RF	Ū			
AccessRRRRRRRBit76543210SymbolEVSDTMOUTVHVTRESTRESWRNGHACCBCAPDefault1110111AccessRRRRRRR	Default	0	0	0	0	0	0	0	0
Bit 7 6 5 4 3 2 1 0 Symbol EVSD TMOUT VHV TRES TRES WRNG HACC BCAP Default 1 1 1 0 1 1 1 Access R R R R R R R	Access	R	R	R	R	R	R	R	R
SymbolEVSDTMOUTVHVTRESTRESWRNGHACCBCAPDefault1110111AccessRRRRRRR	Bit	7	6	5	4	3	2	1	0
Default 1 1 1 0 1 1 1 Access R <t< th=""><th>Symbol</th><th>EVSD</th><th>TMOUT</th><th>VHV</th><th>TRES</th><th>TRES</th><th>WRNG</th><th>HACC</th><th>BCAP</th></t<>	Symbol	EVSD	TMOUT	VHV	TRES	TRES	WRNG	HACC	BCAP
Access R R R R R R R R	Default	1	1	1	1	0	1	1	1
	Access	R	R	R	R	R	R	R	R

Table 10. CAP - Capability register (address 00h) bit allocation

Table 11. Capability register (address 00h) bit description

Bit	Symbol	Description
15:8	RFU	Reserved for future use; must be zero.
7	EVSD	EVENT with shutdown action.
		0 — The EVENT output freezes in its current state when entering shutdown. Upon exiting shutdown, the EVENT output remains in the previous state until the next thermal sample is taken.
		1 (default) — The EVENT output is de-asserted (not driven) when entering shutdown, and remains de-asserted upon exit from shutdown until the next thermal sample is taken.
		Remark: Bit 7 follows the state of SMBUS[4] which can change EVENT output to freeze.
6	TMOUT	Bus time-out period for thermal sensor access during normal operation. Note that bus time-out support is operational in shutdown mode, or for access to the EEPROM portion of the device.
		1 — Parameter $t_{to(SMBus)}$ is supported within the range of 25 ms to 35 ms (SMBus compatible).
5	VHV	High voltage standoff for pin A0.
		1 — Supports a voltage up to 10 V on the A0 pin.
4:3	TRES	Temperature resolution.
		10 — 0.125 °C LSB (11-bit)
2	WRNG	Wider range.
		1 — can read temperatures below 0 $^\circ\mathrm{C}$ and set sign bit accordingly
1	HACC	Higher accuracy (set during manufacture).
		1 — B grade accuracy
0	BCAP	Basic capability.
		1 — has Alarm and Critical Trips interrupt capability

8.3 CONFIG — Configuration register (01h, 16-bit read/write)

		nguration reg	Jister (audres	s o m) bit an	ocation			
Bit	15	14	13	12	11	10	9	8
Symbol			RFU			HE	ΞN	SHMD
Default	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol	CTLB	AWLB	CEVNT	ESTAT	EOCTL	CVO	EP	EMD
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	W	R	R/W	R/W	R/W	R/W

Table 12. CONFIG - Configuration register (address 01h) bit allocation

Table 13. Configuration register (address 01h) bit description

Bit	Symbol	Description
15:11	RFU	reserved for future use; must be '0'.
10:9	HEN	Hysteresis Enable.
		00 — disable hysteresis (default)

- 01 enable hysteresis at 1.5 °C
- 10 enable hysteresis at 3 °C
- 11 enable hysteresis at 6 °C

When enabled, hysteresis is applied to temperature movement around trigger points. For example, consider the behavior of the 'Above Alarm Window' bit (bit 14 of the Temperature register) when the hysteresis is set to 3 °C. As the temperature rises, bit 14 will be set to '1' (temperature is above the alarm window) when the Temperature register contains a value that is greater than the value in the Alarm Temperature Upper Boundary Register. If the temperature decreases, bit 14 will remain set until the measured temperature is less than or equal to the value in the Alarm Temperature Upper Boundary register minus 3 °C. (Refer to Figure 4 and Table 14).

Similarly, the 'Below Alarm Window' bit (bit 13 of the Temperature register) will be set to '0' (temperature is equal to or above the Alarm Window Lower Boundary Trip register) when the value in the Temperature register is equal to or greater than the value in the Alarm Temperature Lower Boundary register. As the temperature decreases, bit 13 will be set to '1' when the value in the Temperature register is equal to or less than the value in the Alarm Temperature Journa the Alarm Temperature Journa the Value in the Temperature decreases, bit 13 will be set to '1' when the value in the Temperature register is equal to or less than the value in the Alarm Temperature Lower Boundary register minus 3 °C. Note that hysteresis is also applied to EVENT pin functionality.

When either of the Critical Trip or Alarm Window lock bits is set, these bits cannot be altered until unlocked.

Table 13. Configuration register (address 01h) bit description continued		
Bit	Symbol	Description
8	SHMD	Shutdown Mode.
		0 — Temperature Sensor is active and converting (default).
		 disabled Temperature Sensor will not generate interrupts or update the temperature data.
		When shut down, the thermal sensor diode and ADC are disabled to save power, no events will be generated. When either of the Critical Trip or Alarm Window lock bits is set, this bit cannot be set until unlocked. However, it can be cleared at any time. When in shutdown mode, the SE97B will still respond to commands normally.
		When coming out of shutdown, the EVENT output remains de-asserted as a new temperature conversion is done. Hysteresis is subtracted from the alarm thresholds if the temperature is falling but not used if the temperature is rising. The temperature trend will not be determined until at least two temperature conversions are done. Since all the alarm threshold flags (TEMP bits 13, 14, 15) are cleared with coming out of shutdown, it was decided to only apply hysteresis to the lower alarm threshold calculations when determining after the initial temperature conversion if the EVENT should assert. After the second temperature conversion the direction of temperature is known and TEMP bits 13, 14 or 15 are changed as required and the EVENT is asserted as required.
7	CTLB	Critical Trip Lock bit.
		0 — Critical Alarm Trip register is not locked and can be altered (default)
		1 — Critical Alarm Trip register settings cannot be altered
		This bit is initially cleared. When set, this bit will return a '1', and remains locked until cleared by internal Power-on reset. This bit can be written with a single write and does not require double writes.
6	AWLB	Alarm Window Lock bit.
		0 — Upper and Lower Alarm Trip registers are not locked and can be altered (default)
		1 — Upper and Lower Alarm Trip registers setting cannot be altered
		This bit is initially cleared. When set, this bit will return a '1' and remains locked until cleared by internal power-on reset. This bit can be written with a single write and does not require double writes.
5	CEVNT	Clear EVENT (write only).
		0 — no effect (default)
		1 — clears active EVENT in Interrupt mode. Writing to this register has no effect in Comparator mode.
		If SMBUS[0] is a logic 0, the SMBus Alert Response Address (ARA) command can be sent to also clear the EVENT output. When read, this register always returns zero.
4	ESTAT	EVENT Status (read only).
		0 — EVENT output condition is not being asserted by this device (default)
		1 — EVENT output pin is being asserted by this device due to Alarm Window or Critical Trip condition
		The actual event causing the event can be determined from the Read Temperature register. Interrupt Events can be cleared by writing to the 'Clear EVENT' bit (CEVNT) or SMBus Alert Response. Writing to this bit will have no effect.