

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Water Flow Sensor - 1/8" SKU: SEN0216

Contents

- 1 Introduction
- 2 Specification
- 3 Board Overview
- 4 Tutorial
 - 4.1 Requirements
 - 4.2 Connection Diagram
 - 4.3 Sample Code
- 5 FAQ

Introduction

The Water Flow sensor measures the rate of a liquid flowing through it. The YF-S401 water flow sensor consists of a plastic valve body, flow rotor and hall effect sensor. It is usually used at the inlet end to detect the amount of flow. When liquid flows through the sensor, a magnetic rotor will rotate and the rate of rotation will vary with the rate of flow. The hall effect sensor will then output a pulse width signal. Connect it to a microcontroller and you can monitor multiple devices such as your coffee maker, sprinkler or anything else, and control the water flow rate to suit your needs!

- A 6 mm hose is recommended
- Avoid unit contact with corrosive chemicals
- The unit must be installed vertically, tilted no more than 5 degrees
- Liquid temperature should be less than 120 C to avoid damage to unit

Specification

Inner Diameter: 4 mmOutside diameter: 7 mm

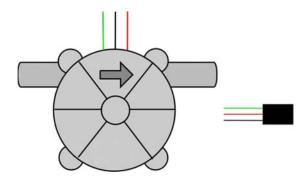
Proof Water Pressure: <0.8 MPaWater Flow Range: 0.3-6 L/min

Voltage Range: 5~12 V

• Operating Current: 15 mA (DC 5V) • Insulation Resistance: >100 M Ω

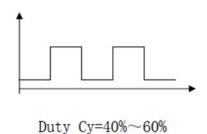
• Accuracy: ±5% (0.3-3L/min)

The Output Pulse High Level: >4.5 VDC (DC input voltage 5 V)
The Output Pulse Low Level: <0.5 VDC (DC input voltage 5 V)


• Output Pulse Duty Ratio: 50% ± 10%

• Water-flow Formula: 1L = 5880 square waves

Working Humidity Range: 35% ~ 90% RH (no frost)
Dimension: 58*35*26 mm/2.28*1.37*1.02 inches


Weight: 30g

Board Overview

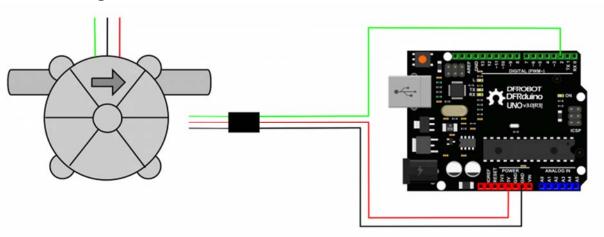
Number	Color	Name	Description
1	Green	Signal	Pulse Signal
2	Red	VCC	5~12V
3	Black	GND	GND

Pulse Signal

Tutorial

In this Tutorial, we'll measure liquid flow using this sensor.

Requirements


Hardware

DFRduino UNO R3 Water flow sensor Jumper Wires

Software

Arduino IDE, Click to Download Arduino IDE from Arduino® https://www.arduino.cc/en/Main/Software

Connection Diagram

Sample Code

```
7 GNU Lesser General Public License.
8 See <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a> for details.
9 All above must be included in any redistribution
10 *********************************
11
12 /*********Notice and Trouble shooting*********
13 1.Connection and Diagram can be found here http://www.dfrobot.com/wiki/i
ndex.php?title=Water_Flow_Sensor_-_1/8%22_SKU:_SEN0216
14 2. This code is tested on Arduino Uno.
16 volatile double waterFlow;
17 void setup() {
18
    Serial.begin(9600); //baudrate
19
    waterFlow = 0;
20
    attachInterrupt(0, pulse, RISING); //DIGITAL Pin 2: Interrupt 0
21 }
22 void loop() {
23
    Serial.print("waterFlow:");
24
    Serial.print(waterFlow);
25
    Serial.println(" L");
    delay(500);
26
27 }
28
29 void pulse() //measure the quantity of square wave
30 {
31
    waterFlow += 1.0 / 5880.0;
32 }
```

FAQ

For any questions, advice or cool ideas to share, please visit the **DFRobot Forum**.