

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HIGH CURRENT, 1-PHASE CENTER TAPS AND DOUBLER

SET03**03 SET03**19 SET03**12 SET03**04 SET03**11

January 9, 1998

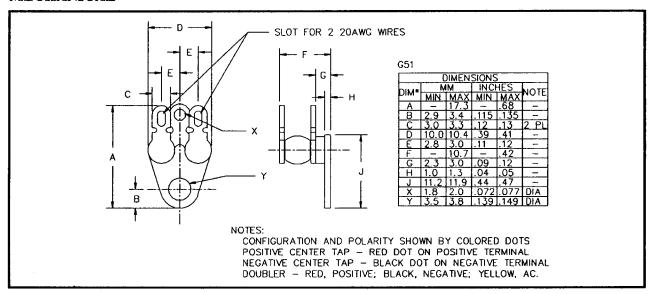
TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com

HIGH CURRENT, HIGH DENSITY, ISOLATED, SILICON POWER RECTIFIER STUD

- · Low thermal impedance
- Small size and low weight
- High current applications
- Isolated for direct heatsink mounting
- High surge ratings

QUICK REFERENCE DATA

- $V_R = 150V 1000V$
- $I_F = 15A$
- $t_{rr} = 30nS 2\mu S$
- I_{FSM} ≥ 150A


ABSOLUTE MAXIMUM RATINGS

Device Type	Working Reverse Voltage	Average Rectified Current IF(AV) @ TMB see note 1			1 Cycle Surge I _{FSM} @ t _P = 8.3mS		Operating & Storage Temperature Range
		@ 55°C	100°C	125℃	@ 25 °C	@ 100°C	(T _{OP}) (T _{STC})
	Volts	Amps	Amps	Amps	Amps	Amps	°C
SET03**03	1000	30	22	16	150	100	-55 to +175
SET03**19	1000	20	16	12	150	80	-55 to +175
SET03**12	600	30	22	16	150	100	-55 to +175
SET03**04	400	30	22	16	150	80	-55 to +175
SET03**11	150	30	20	14	175	175	-55 to +150
1	I	E					

^{1/} Average Rectified Current = 0.5xIF(AV) for Doubler

 $R_{\theta JMB} = 1.5^{\circ} C/W$ for all varieties, see next page for circuit configurations.

MECHANICAL

HIGH CURRENT, 1-PHASE CENTER TAPS AND DOUBLER

SET03**03 SET03**19 SET03**12 SET03**04 SET03**11

January 9, 1998

ELECTRICAL CHARACTERISTICS (Apply per leg)

Device		n Leakage @ V _{RWM}	Maximum Forward Voltage	Maximum Reverse Recovery Time
Type	$T_j = 25$ °C	$T_{\rm j} = 100 {\rm ^oC}$	@ 9.0 A	
	μА	μА	Volts	nS
SET03**03	1.0	20	1.2	2000
SET03**19	1.0	25	2.2	150
SET03**12	1.0	20	1.2	2000
SET03**04	1.0	20	1.5	150
SET03**11	10.0	500	1.1	30

**

CIRCUIT CONFIGURATIONS

** = 06 Positive Center Tap

** = 08 Negative Center Tap

** = 10 Doubler

eg. SET030603 = Positive Center Tap 1000V, 2000nS

SET03**03 SET03**19 SET03**12 SET03**04 SET03**11

January 9, 1998

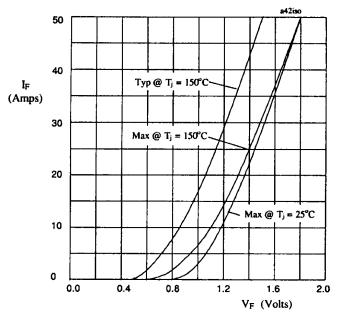


Figure 1. Forward voltage drop as a function of forward current for SET03**03 & SET03**12.

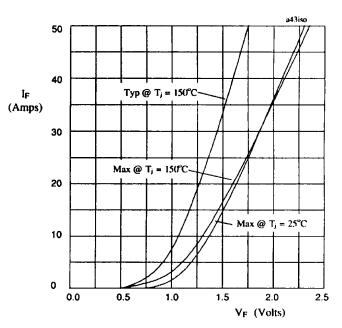


Figure 2. Forward voltage drop as a function of forward current for SET03**04.

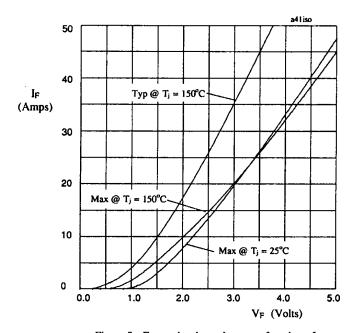


Figure 3. Forward voltage drop as a function of forward current for SET03**19.

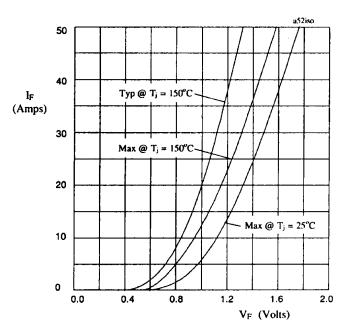


Figure 4. Forward voltage drop as a function of forward current for SET03**11.

January 9, 1998

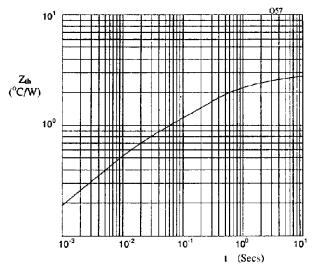


Figure 5. Typical transient thermal impedance characteristic.

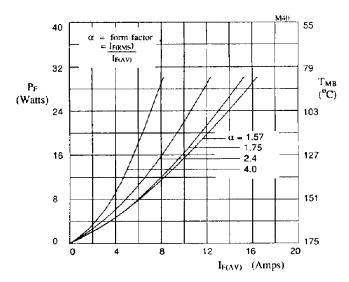


Figure 6. Forward power dissipation and maximum allowable mounting base temperature as a function of forward current for sinusoidal operation, for SET03**03 and SET03**12.

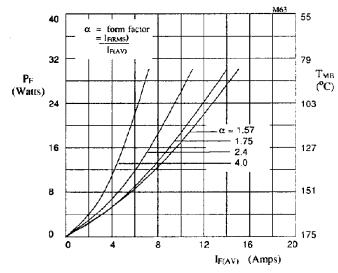


Figure 7. Forward power dissipation and maximum allowable mounting base temperature as a function of forward current for sinusoidal operation, for SET03**04.

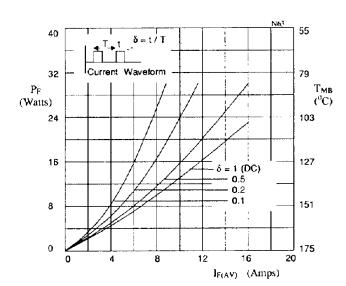


Figure 8. Forward power dissipation and maximum allowable mounting base temperature as a function of forward current for square wave operation, for SET03**04

HIGH CURRENT, 1-PHASE CENTER TAPS AND DOUBLER

SET03**03 SET03**19 SET03**12 SET03**04 SET03**11

January 9, 1998

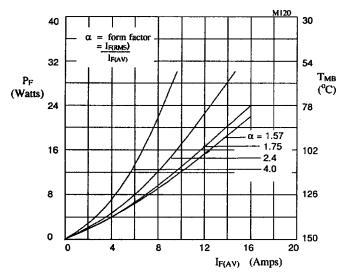


Figure 9. Forward power dissipation and maximum allowable mounting base temperature as a function of forward current for sinusoidal operation, for SET03**11.

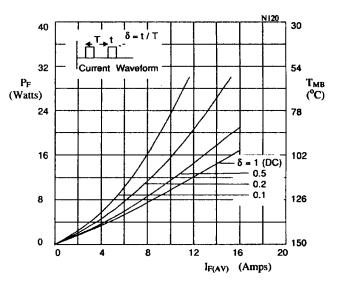


Figure 10. Forward power dissipation and maximum allowable mounting base temperature as a function of forward current for square wave operation, for SET03**11.