

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

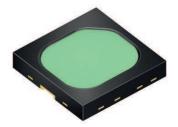
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



OSLON Black Flat (IR broad band emitter) - 120° Version 1.1

SFH 4735

Features:

- SMD epoxy package
- ThinGaN (UX:3)
- Wide viewing angle of 120°
- Improved Corrosion Robustness
- Low thermal resistance (Max. 9 K/W)

Applications

· Illumination source for spectroscopy

Notes

Depending on the mode of operation, these devices emit highly concentrated non visible infrared light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 60825-1 and IEC 62471.

Ordering Information

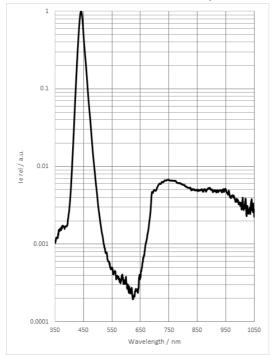
Туре:	Total Radiant Flux	Ordering Code	
	Φ _e [mW]		
	I _F = 350 mA, t _p = 20 ms		
SFH 4735	200	Q65111A9885	

Note: Measured with integrating sphere.

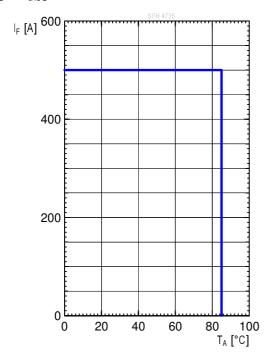
Maximum Ratings $(T_A = 25 \, ^{\circ}C)$

Parameter	Symbol	Values	Unit
Operation and storage temperature range	T _{op} ; T _{stg}	-40 85	°C
Junction temperature	T _j	125	°C
Forward current	I _F	500	mA
Surge current $(t_p \le 1 \text{ ms, D} = 0)$	I _{FSM}	1	А
Power consumption	P _{tot}	1900	mW
ESD withstand voltage (acc. to ANSI/ ESDA/ JEDEC JS-001 - HBM)	V _{ESD}	2	kV
Thermal resistance junction - soldering point	R _{thJS}	9	K/W

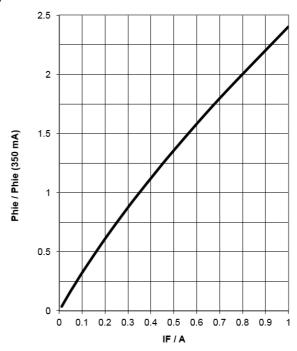
Note: For the forward current and power consumption please see "maximum permissible forward current" diagram


Characteristics ($T_A = 25 \, ^{\circ}C$)

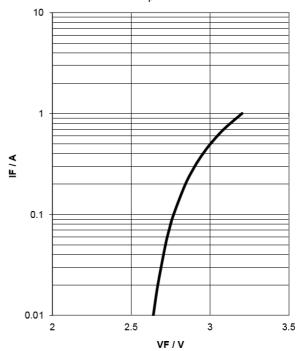
Parameter		Symbol	Values	Unit
Half angle	(typ)	φ	± 60	0
Forward voltage $(I_F = 350 \text{ mA}, t_p = 20 \text{ ms})$	(typ (max))	V _F	2.95 (≤ 3.5)	V
Forward voltage $(I_F = 500 \text{ mA}, t_p = 100 \mu\text{s})$	(typ (max))	V _F	3 (≤ 3.8)	V
Reverse current (V _R = 5 V)		I _R	not designed for reverse operation	μΑ
Radiant intensity ($I_F = 350 \text{ mA}, t_p = 20 \text{ ms}, \lambda = 350 - 600 \text{nm}$)		I _{e, typ}	59	mW/sr
Radiant intensity ($I_F = 350 \text{ mA}, t_p = 20 \text{ ms}, \lambda = 600 - 1050 \text{nm}$)		I _{e, typ}	5	mW/sr
Total radiant flux $(I_F = 350 \text{ mA}, t_p=20 \text{ ms}, \lambda = 350 - 600 \text{nm})$	(typ)	Фе	184	mW
Total radiant flux (I _F = 350 mA, t _p =20 ms, λ = 600 - 1050nm)	(typ)	Фе	16	mW
Spectral flux $(I_F = 350 \text{ mA}, t_p = 20 \text{ ms}, \lambda = 750 \text{ nm})$	(typ)	Φ _{e, λ}	60	μW/nm
Spectral flux $(I_F = 350 \text{ mA}, t_p = 20 \text{ ms}, \lambda = 850 \text{ nm})$	(typ)	Φ _{e, λ}	45	μW/nm
Spectral flux (I _F = 350 mA, t_p = 20 ms, λ = 950 nm)	(typ)	Φ _{e, λ}	45	μW/nm


Relative Spectral Emission 1) page 12

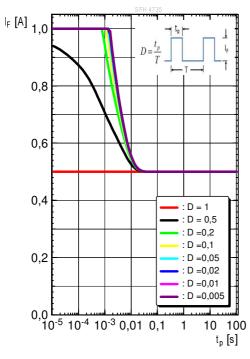
 $I_{rel} = f(\lambda), T_A = 25 \text{ °C}, I_F = 350 \text{ mA}, t_p = 10 \text{ ms}$


Max. Permissible Forward Current

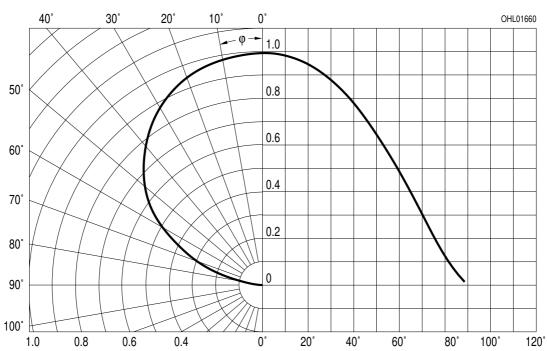
 $I_F = f(T_S), R_{thJS} = 9 \text{ K/W}$


Relative Total Radiant Flux 1) page 12

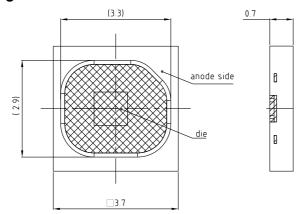
 $\Phi_{\rm e}/\Phi_{\rm e}(350{\rm mA})$ = f (I_F), T_A = 25 °C, Single pulse, t_p = 100 $\mu{\rm s}$

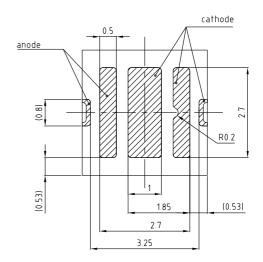

Forward Current 1) page 12

 $I_F = f(V_F)$, single pulse, $t_D = 100 \mu s$, $T_A = 25^{\circ} C$


Permissible Pulse Handling Capability

 $I_F = f(t_p)$, $T_A = 85$ °C, duty cycle D = parameter




Radiation Characteristics 1) page 12

$$I_{rel} = f(\phi), T_A = 25^{\circ}C$$

Package Outline

C67062-A0189-A103

general tolerance ± 0.1 lead finish Au

Dimensions in mm.

Type:

SFH 4735

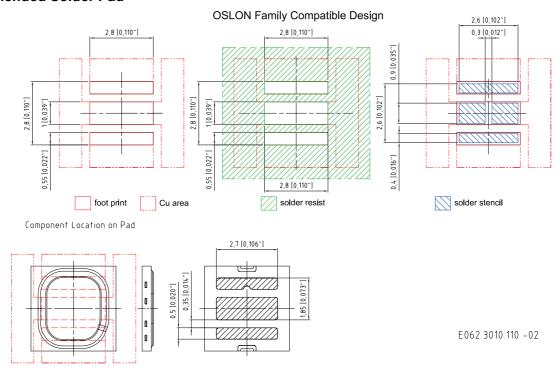
Package

OSLON Black Flat

Approximate Weight:

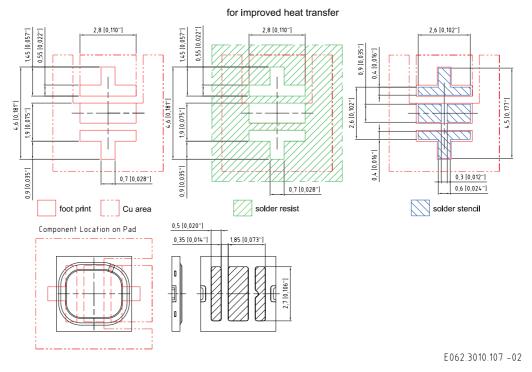
0.2 g

Package marking


see drawing

Note:

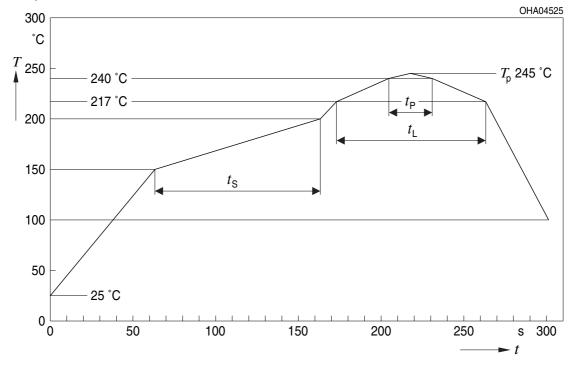
IRED is protected by ESD device which is connected in parallel to chip.



Recommended Solder Pad

For superior solder joint connectivity results we recommend soldering under standard nitrogen atmosphere.

Recommended Solder Pad

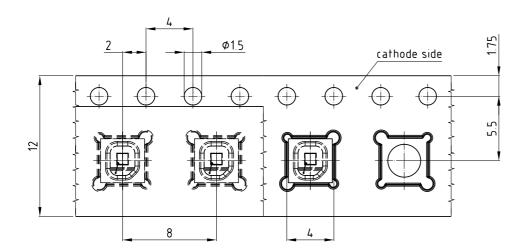


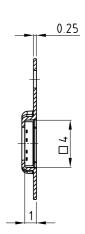
Note:

For superior solder joint connectivity results we recommend soldering under standard nitrogen atmosphere.

Reflow Soldering Profile

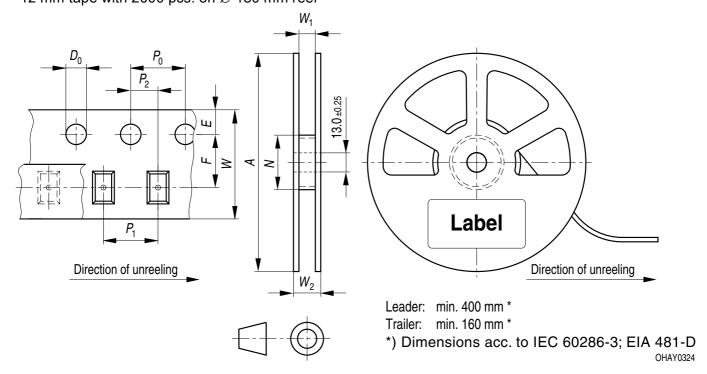
Product complies to MSL Level 2 acc. to JEDEC J-STD-020E


OHA04612 Pb-Free (SnAgCu) Assembly **Profile Feature Symbol** Unit **Profil-Charakteristik Symbol Einheit** Minimum Recommendation Maximum Ramp-up rate to preheat*) 3 K/s 25 °C to 150 °C Time t_S $t_{\rm S}$ 100 120 s T_{Smin} to T_{Smax} Ramp-up rate to peak*) 2 K/s T_{Smax} to T_{P} T_L °C Liquidus temperature 217 Time above liquidus temperature ${\rm t}_{\rm L}$ 80 100 s °С Peak temperature T_P 245 260 Time within 5 °C of the specified peak 10 20 30 temperature T_P - 5 K 3 6 K/s Ramp-down rate* T_P to 100 °C Time 480 s 25 $^{\circ}$ C to T_P


All temperatures refer to the center of the package, measured on the top of the component

^{*} slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

Taping



C67062-A0030-B11-06

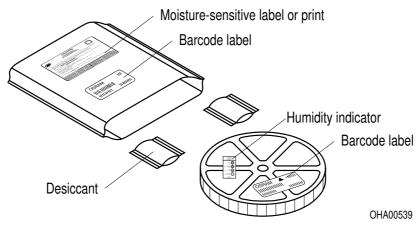
Dimensions in mm.

Tape and Reel

12 mm tape with 2000 pcs. on \varnothing 180 mm reel

Tape dimensions [mm]

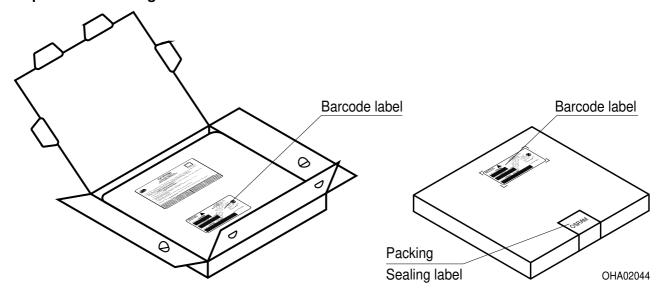
W	P ₀	P ₁	P ₂	D_0	E	F
12 + 0.3 / - 0.1	4 ± 0.1	4 ± 0.1 or 8 ± 0.1	2 ± 0.05	1.5 ± 0.1	1.75 ± 0.1	5.5 ± 0.05


Reel dimensions [mm]

Α	W	N _{min}	W ₁	W _{2max}
180	12	60	12.4 + 2	18.4

Barcode-Product-Label (BPL)

Dry Packing Process and Materials



Note:

Moisture-sensitive product is packed in a dry bag containing desiccant and a humidity card. Regarding dry pack you will find further information in the internet. Here you will also find the normative references like JEDEC.

Transportation Packing and Materials

Dimensions of transportation box in mm

Width	Length	Height
195 ± 5	195 ± 5	30 ± 5

Disclaimer

Language english will prevail in case of any discrepancies or deviations between the two language wordings.

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components* may only be used in life-support devices** or systems with the express written approval of OSRAM OS.

- *) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- **) Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

Glossary

Typical Values: Due to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.

Published by OSRAM Opto Semiconductors GmbH Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

EU RoHS and China RoHS compliant product 此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。

