imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

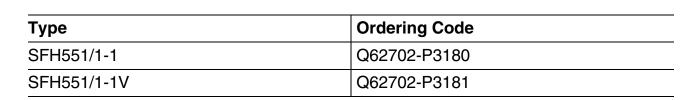
Contact us

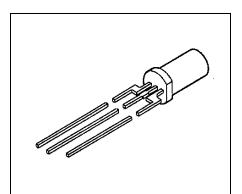
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

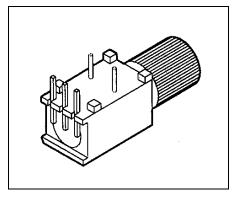
Integrated Photo Detector Receiver for Plastic Fiber Plastic Connector Housing

SFH551/1-1 SFH551/1-1V

Features

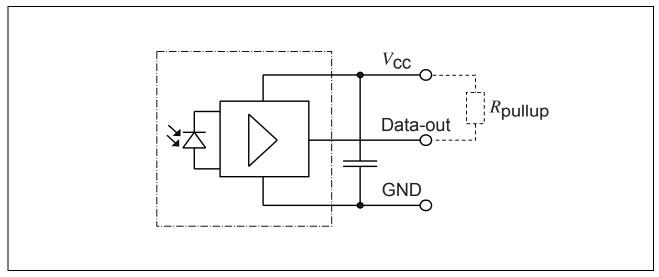

- Bipolar IC with open-collector output
- Digital output, TTL compatible
- Sensitive in visible and near IR range
- Low switching threshold
- Transfer rate \leq 5 Mbit/s
- 2.2 mm aperture holds standard 1000 micron plastic fiber
- No fiber stripping required
- Molded microlens for efficient coupling


Plastic Connector Housing


- Mounting screw attached to the connector
- Interference-free transmission from light-tight housing
- Transmitter and receiver can be flexibly positioned
- No cross talk
- · Auto insertable and wave solderable
- Supplied in tubes

Applications

- Household electronics
- Power electronics
- Optical networks



Block Diagram

Block Diagram

Figure 1

A bypass capacitor (100 nF) near the device (distance \leq 3 cm) is necessary between ground and V_{CC} . In critical applications the distance may be shorter.

Description

The SFH551/1V is a transimpedance amplifier with digital TTL open collector output stage and integrated photodiode. The active area of the detector in connection with the molded microlens gives an efficient coupling from the end of a plastic fiber.

The receiver is fully DC coupled and therefore no line code is needed.

The SFH551/1V includes a Schmitt trigger function to provide stable output states over the whole dynamic range. For optical input power levels above 6 μ W typically the electrical output will be logical "low" and vice versa. With noise free V_{cc} and GND no undefined output signal is possible. SFH551/1 must not be used without shielding the ambient light, because ambient light causes malfunction when reaching the threshold level, noise or complete switching the output. Interference free transmission is possible by using the SFH551/1V with the black plastic connector housing.

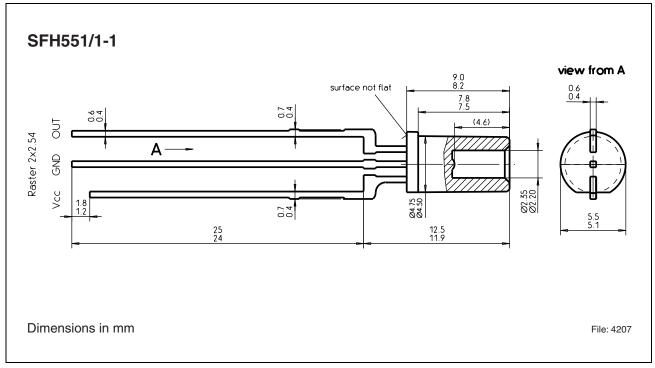
Technical Data

Technical Data

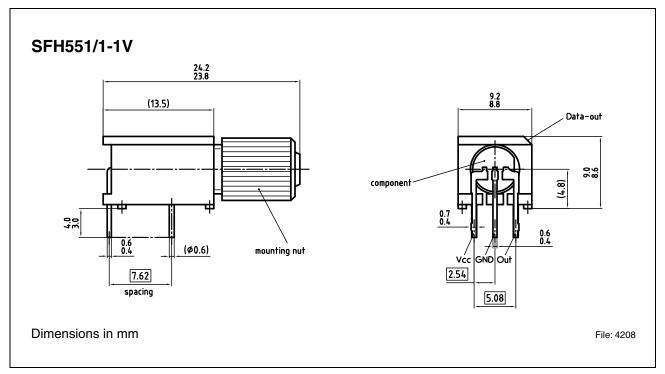
Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Operating Temperature Range	T _{OP}	-40	+85	°C
Storage Temperature Range	T _{STG}	-40	+100	°C
Soldering Temperature (2 mm from case bottom, $t \le 5$ s)	T _S		260	°C
Supply Voltage Range without Damage	V _{CC}	-0.5	15	V
Recommended and Guaranteed Maximum Voltage			5.5	V
Minimum Supply Voltage for Function	V _{CCmin}	4		V
Minimum Pull-up Resistance $(V_{\rm CC} = 5 \text{ V})$	R _{outmin}	330		Ω
Output Voltage	V ₀	-0.5	15	V
Output Current	I ₀		50	mA
Power Dissipation (output)	P ₀		100	mW

Technical Data


Characteristics ($T_A = 25^{\circ}$ C, $V_{CC} = 4.75$ to 5.25 V)

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Maximum Photosensitivity Wavelength	λ_{Smax}		700		nm
Photosensitivity Spectral Range $(S = 80\% S_{max})$	λ	600		780	nm
SFH551/1-1 Optical Threshold Power (λ = 660 nm) for Output Low	Φ_{INth}		≥ 6 ≥ –22		μW dBm
Maximum Optical Power (λ = 660 nm) Maximum Value of t_{PLH} at Maximum Power	Φ_{INL}		1000 0		µW dBm
Optical Power for Output High without Errors (λ = 660 nm)	Φ_{INH}		≤ 0.1 ≤40		μW dBm
Propagation Delay (optical input to electrical output, with fast optical pulse)	t _{PHL} t _{PLH}		< 100 < 250		ns
Current Consumption (without output current)	I _{cc}		4		mA



Package Outlines

Package Outlines

Figure 2

SFH551/1-1 SFH551/1-1V

Revision History:	2005-06-09	DS2
Previous Version:	2004-03-19	

Edition 2005-06-09 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2005. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.